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KNOT SURGERY FORMULAE FOR INSTANTON FLOER HOMOLOGY I:

THE MAIN THEOREM

ZHENKUN LI AND FAN YE

ABSTRACT. We prove an integral surgery formula for framed instanton homology (Y, (K)) for
any knot K in a 3-manifold Y with [K] = 0 € Hi(Y;Q) and m # 0. Though the statement is
similar to Ozsvath-Szabd’s integral surgery formula for Heegaard Floer homology, the proof is
new and based on sutured instanton homology SHI and the octahedral lemma in the derived
category. As a corollary, we obtain an exact triangle between If(Yy,(K)), I#(Yrnyr(K)) and k
copies of Iﬁ(Y) for any m # 0 and large k. In the proof of the formula, we discover many new
exact triangles for sutured instanton homology and relate some surgery cobordism map to the
sum of bypass maps, which are of independent interest. In a companion paper, we derive many
applications and computations based on the integral surgery formula.
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1. INTRODUCTION

Framed instanton homology I*(Y) for any closed 3-manifold Y was introduced by Kronheimer-
Mrowka [KMI11] and was conjectured to be isomorphic to the hat version of Heegaard Floer homol-
ogy HF (Y) [KM10]. This conjecture is still widely open and, due to the computational difficulty of
instanton Floer homology, not many examples are known. In recent years, many people have done
computations of the framed instanton homology special families of 3-manifolds, see for example
[LPCS20, BS19, [BS21]. Yet most results focused on computing the dimension of framed instanton
Floer homology and many techniques only work for S3 or rational homology spheres, but a general
structural theorem that relates the framed instanton homology of Dehn surgeries to the information
from the knot complement still remains elusive.

In |LY21h], the authors of the current paper proved a large surgery formula for framed instanton
homology which led to a series of applications in computing the framed instanton homology and
studying the representations of the fundamental groups of Dehn surgeries of some families of knots.
However, in that work, the Dehn surgery slope must be large (at least 2g + 1 where g is the Seifert
genus of the knot), and thus still not much is known about the framed instanton homology of small
Dehn surgery slopes. In this paper, we further prove an integral surgery formula for rationally
null-homologous knots, inspired by Ozsvath-Szabd’s surgery formula for Heegaard Floer homology
[0S08, I0S11)). For simplicity, in the introduction we only present the discussions and results for
(integral) null-homologous knots (e.g. knots in S3) and leave the general setups to Section 3.3l

First let us recall the results from [LY21b]. Suppose K < Y is a null-homologous knot. Let
Y\N(K) be the knot complement and let T';, be the union of two oppositely oriented meridians of the
knot on (Y\N(K)). Let SHI(—Y\N(K), —T',,) be the corresponding sutured instanton homology
introduced by Kronheimer-Mrowka [KM10], where the minus sign denotes the orientation reversal
for technical needs (note that SHI(—M,—v) =~ SHI(M,v) and in particular I*(—Y_,,(K)) =
IF(Y_,,(K))). A Seifert surface of K induces a Z-grading on SHI(~Y\N(K),—T,). In [LY21b],
we constructed a set of differentials on SHI(-Y\N(K),-T',)

d: : SHI(-Y\N(K),-T,i) — SHI(-Y\N(K),-Ty, )
for any gradings i # j € Z. We then constructed bent complexes

A, = (SHI( Y\N (K ), D di+ > dl)

s<i<jg s§=1>]

i (sm( V\N(K Edz), and B~ = (SHI( Y\N(K Zdz)

From |LY21b], the homologies of these complexes are related to the Dehn surgeries of K as
follows:

(1.1) H(B*)~ H(B™) = I*(-Y),

7
(1.2) F(Y_,(K) =~ @ H(A;) for any integer m > 2g(K) + 1.
s=15"]
To state the integral surgery formula, we introduce more notations. For s € Z, let B be identical

copies of BE. Define chain maps
ts. A, - BE



KNOT SURGERY FORMULAE FOR INSTANTON FLOER HOMOLOGY I: THE MAIN THEOREM 3
as follows: for € (SHI(-Y\N(K),-T,),1),

a8 (x) = v 1:257 and 7 %(x) = v z:és,
0 i<s, 0 2>s.

Let 7% denote the direct sum of all 7%*. Slightly abusing the notation, we also use them to
denote the induced maps on the homologies. The main result of the paper is the following.

Theorem 1.1 (Integral surgery formula). Suppose K <Y is a null-homologous knot. Let As, BE,
7t be defined as above. Then for any m € Z\{0}, there exists a grading preserving isomorphism

En: @HBY) = DH(BL,)

SEL SEL

so that
(=Y . (K)) = H(Cone(w_ +Emont i P H(A) — @H(B;)))

SEZ SEZ
With the isomorphisms in (IZ) and (L)), we can truncate the above formula for I*(Y_,,(K)) to
obtain the following exact triangle.

Corollary 1.2 (Generalized surgery exact triangle). Suppose K < Y is a null-homologous knot
and m is a fized nonzero integer. Then for any large enough integer k, there exists an exact triangle

m—i(K)) Dy I4(
(=Y (K))

Remark 1.3. Note that in Theorem 1.1 we exclude the case of m = 0. This is due to the sign
ambiguity in the definition of sutured instanton homology. The original version of sutured instanton
homology defined by Kronheimer-Mrowka [KM10] was only well-defined up to isomorphisms, and
then Baldwin-Sivek [BS15] proved that they are well-defined up to a scalar in C. As a result, all
related maps are only well-defined up to scalars. When m # 0, the maps 7% and Z,, o 7% have
distinct targeting spaces, namely Bs and Bgi,,. As a result, the scalar ambiguity for individual
maps does not influence the dimension of the homology of the mapping cone. However, when m = 0,
different scalars would indeed make differences. See the end of Section [ for an example of this
subtlety.

(1.3) IH(—Y_

_Y)

Remark 1.4. The analogous result of the exact triangle (IL3]) in Heegaard Floer theory was proved
by Ozsvdth-Szabé |OS0O&] using twisted coefficients, which is a crucial step towards proving the
integral surgery formula in their setups. The proof cannot be applied to instanton theory directly.
So in this paper, we go in a reversed way: we will use sutured instanton theory to prove Theorem
[C1] and derive Corollary as a direct application. The strategy to prove Theorem [L.I] can be
found in Section Bl and Section

The analogs of 71:* in Heegaard Floer theory can be interpreted as cobordism maps associated to
some particular spin® structures. In instanton theory, there is a decomposition of cobordism maps
along basic classes. However, currently such a decomposition is only known to exist for cobordisms
whose first Betti number is zero. So for the moment let us assume the ambient 3-manifold Y is a
rational homology sphere. For any integer m, there is a natural cobordism W,, from —Y3, (K) to
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—~Y3. From [BS19, Section 1.2], there exists a decomposition of the cobordism map I*(W,,) along
basic classes
F(Wy) = 3 (W, [5)),

SEZL

where [s] € H?(W) denote the class that satisfies the equality

[s]([S]) = 28 — m.
We make the following conjecture.

Conjecture 1.5. Suppose K < Y is a null-homologous knot. Suppose b;(Y) = 0 and m € Z
with m > 2¢g(K) + 1. Let Ay, By, nt°, W,,, I¥(W,,,[s]) be defined as above. Then for any

s

se[|22], [552]] N Z, there are commutative diagrams

H(A)———F(-Y_m(K))  H(A) = I (-Y_n(K))

‘/ﬂ”s LI”(me[s]) lw*‘s LI”(WM,[erm])

H(B,) ——=— > [¥(-Y) H(B,) ——= > [¥(-Y)

The obstacle to obtain a decomposition of instanton cobordism map in general is one of the
difficulties to export the original proof of the integral surgery formula in Heegaard Floer theory
to instanton setup. To overcome this problem, we need to work with a suitable setup for which
some kind of decompositions do exist. A good candidate is the sutured instanton theory. In sutured
instanton theory, properly embedded surfaces induce Z-gradings on the homology, and bypass maps
relating different sutures are homogeneous with respect to such gradings. We have already used this
setup to construct spin®-like decompositions for the framed instanton homology of Dehn surgeries of
knots, constructed bent complexes in instanton theory, and have established a large surgery formula
in our previous work |LY22, [LY214, [LY21H)].

In this paper, to prove the integral surgery formula, we further study the relations between
different sutures on the knot complement and establish some new exact triangles and commutative
diagrams that may be of independent interests. Then these new and old algebraic structures
relating different sutures enable us to apply the octahedral lemma to prove the desired integral
surgery formula. It is worth mentioning that ultimately the whole proof in the current paper
depends only on some most fundamental properties of Floer theory: the surgery exact triangle, the
functoriality of the cobordism maps, and the adjunction inequality. This implies that the existence
of the surgery formula is a born-in property of the Floer theory.

The surgery formula developed in the current paper is a powerful tool to study the Dehn surgeries
along knots. It enables us to do explicit computations in many cases, even when the ambient 3-
manifold has positive first Betti number. In a companion paper |LY]], we will use the surgery formula
and the techniques developed in this paper to derive many new applications and computations. We
sketch the results as follows.

(1) We study the behavior of the integral surgery formula under the connected sum with a core
knot in a lens space (whose complement is a solid torus) and then derive a rational surgery
formula for framed instanton homology.

(2) We study the O-surgery on a knot K inside S® or any other integral homology sphere
instanton L-space. We derive a formula computing the nonzero grading part of I*(Sy(K))
with respect to the grading induced by the Seifert surface of the knot.
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(3) We study the framed instanton homology of Dehn surgeries on instanton L-space knots and
Floer simple knots, for which all complexes A, Bf and the maps 7+, Z,, are explicitly due
to some 1-dimensional argument.

(4) We study almost L-space knots, i.e., a non-L-space knot K so that there exists a nonzero
integer n with dim I*(S2(K)) = |n| +2. We prove a genus one almost L-space knot is either
the figure-eight or the knot 55. We also show that almost L-space knots of genus at least 2
are fibered and strongly quasi-positive.

(5) We study some families of alternating knots. Using an inductive argument by oriented
skein relation, we can describe their bent complexes explicitly and then the surgery formula
applies routinely.

(6) Using the same technique as above, we also study the (non-zero) integral surgery of twisted
Whitehead doubles. The results for whitehead doubles can also tell us the framed instanton
Floer homology of the splicing of two knot complements in S3, where one knot is either the
trefoil or the figure-eight.

(7) We study (nonzero) integral surgeries on Boromean knots inside #2"S* x S?, which gives
rise to circle bundles over surfaces with (nonzero) Euler numbers. In this case the the bent
complexes A, and BE can be computed directly and the maps 7+ between them can be
fixed with the help of the Hp-action on the homology.

Organization. The paper is organized as follows. In Section 2] we introduce basic setups, the
notations in sutured instanton homology, and deal with the scalar ambiguity mentioned in Remark
241 We also present some algebraic lemmas including the octahedral lemma in the derived category
that are used in latter sections. In Section [3] we present the strategy to prove the integral surgery
formula. We first restate the integral surgery formula using sutured instanton homology, and explain
how to apply the octahedral lemma to prove it. Then we explain how to translate the integral
surgery formula from the language of sutured instanton theory to the language of bent complex,
which coincides with the discussions in the introduction. All the rest sections are devoted to prove
the three exact triangles and three commutative diagrams that are involved in the octahedral lemma,
i.e., Equation (32) to Equation (87). In Section Fl we study the relation between the (-1)-Dehn
surgery map associated to a curve intersecting the suture twice and the two natural bypass maps
associated to that curve. This helps us to prove Equation (8.2) and Equation (3E). In Section [A]
Equation ([33]), Equation ([B.6]) and part of Equation (4] are proved. The rest two sections are
devoted to prove Equation (34]) and Equation B7), which is the most technical part of the paper.
In Section [6]l we prove some technical lemmas that are finally used in Section [7 to finish the proof.

Acknowledgement. The authors thank John A. Baldwin and Steven Sivek for the discussion on
the proof of Proposition 1] and thank Zekun Chen and Linsheng Wang for the discussion on
homological algebra. The authors would like to thank Ciprian Manolescu and Jacob Rasmussen
for helpful comments. The authors also thank Sudipta Ghosh, Jianfeng Lin, Yi Xie and Ian Zemke
for valuable discussions. The second author is also grateful to Yi Liu for inviting him to BICMR,
Peking University when he was writing the early version of this paper.

2. BASIC SETUPS

2.1. Conventions. If it is not mentioned, all manifolds are smooth, oriented, and connected. Ho-
mology groups and cohomology groups are with Z coefficients. We write Z,, for Z/nZ and Fy for
the field with two elements.
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A knot K c Y is called null-homologous if it represents the trivial homology class in H;(Y;Z),
while it is called rationally null-homologous if it represents the trivial homology class in Hy(Y; Q).

For any oriented 3-manifold M, we write —M for the manifold obtained from M by reversing
the orientation. For any surface S in M and any suture v ¢ 0M, we write S and « for the same
surface and suture in —M, without reversing their orientations. For a knot K in a 3-manifold Y,
we write (=Y, K) for the induced knot in —Y with induced orientation, called the mirror knot of
K. The corresponding balanced sutured manifold is (=Y \N(K), —yxk).

2.2. Sutured instanton homology. For any balanced sutured manifold (M,~) [Juh06, Def-
inition 2.2], Kronheimer-Mrowka [KM10, Section 7] constructed an isomorphism class of C-vector
spaces SHI(M,~). Later, Baldwin-Sivek [BS15, Section 9] dealt with the naturality issue and con-
structed (untwisted and twisted vesions of) projectively transitive systems related to SHI(M,~).
We will use the twisted version, which we write as SHI(M, «) and call sutured instanton homol-
ogy.

In this paper, when considering maps between sutured instanton homology, we can regard them
as linear maps between actual vector spaces, at the cost that equations (or commutative diagrams)
between maps only hold up to a nonzero scalar due to the projectivity. More detailed discussion
on the projectivity can be found in the next subsection.

Moreover, there is a relative Zgo-grading on SHI(M, v) obtained from the construction of sutured
instanton homology, which we consider as a homological grading.

Definition 2.1. Suppose K is a knot in a closed 3-manifold Y. Let Y (1) := Y\B? and let § be
a simple closed curve on 0Y (1) =~ S2. Let Y\N(K) be the knot complement and let ', be two
oppositely oriented meridians of K on o(Y\N(K)) = T?. Define

I*(Y) := SHI(Y (1), 6) and KHI(Y, K) := SHI(Y\N(K),T,,).

Remark 2.2. By the naturality results, we should specify the places of the removing ball, the
neighborhood of the knot, and the sutures to define I*(Y) and KHI(Y, K). These data can be fixed
by choosing a basepoint in Y or K. For simplicity, we omit those choices in the notations.

From now on, we will suppose K < Y is a rationally null-homologous knot and fix some notations.
Let p be the meridian of K and pick a longitude A (so that A-p = 1) to fix a framing of K. We will
always assume Y\N(K) is irreducible, but many results still hold due to the following connected
sum formula of sutured instanton homology [Lil8a, Section 1.8]:

SHI(Y'$Y\N(K),~) = I*(Y") ® SHI(Y\N(K), 7).

Given coprime integers r and s, let I, /; be the suture on d(Y'\N(K')) consists of two oppositely
oriented, simple closed curves of slope —r/s, with respect to the chosen framing (i.e. the homology
of the curves are +(—ru + s\) € H1(0N(K))). Pick S to be a minimal genus Seifert surface of K.

Convention. We will use p to denote the order of [K] € H1(Y), i.e., p is the minimal positive
integer satisfying p[K] =0¢€ H1(Y). Let ¢ = 0S- X and let g = ¢g(S) be the genus of S. When K is
null-homologous, we always choose the Seifert framing A = 5. In such case, we have (p,q) = (1,0).

Remark 2.3. The meanings of p and ¢ above are different from our previous papers [LY22, [LY21h)].
Before, we used [i and A to denote the meridian of the knot K and the preferred framing. When
0S is connected, it is the same as the homological longitude A in previous papers. Hence p and ¢
in this paper should be ¢ and ¢ in previous papers.
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For simplicity, we use the bold symbol of the suture to represent the sutured instanton homology
of the balanced sutured manifold with the reversed orientation:

Fr/s = @(_(Y\N(K))v _Fr/s)'

When (r,s) = (+1,0), we write I', ), = I',. When s = £1, we write I';, = T',,;; = I'(_p,y(—1). We
also write I, and I',, for the corresponding sutured instanton homologies.

Remark 2.4. Strictly speaking, the sutures corresponding to (r,s) = (1,0) and (—1,0) are not
identical because the orientations are opposite. Since both sutures are on J(Y\N(K)) of the same
slope, they are isotopic. Moreover, we can choose a canonical isotopy by rotating the suture along
the direction specified by the orientation of the knot. Due to discussion in Heegaard Floer theory
[Sarl5, |Zem19] and the conjectural relation between Heegaard Floer theory and instanton theory
[KM10], it is expected that rotating the suture back to the original position induces a nontrivial
isomorphism of the sutured instanton homology. So we pick the canonical isotopy to be the minimal
rotation of the suture. Hence we can abuse notations and write I',, for both sutures. The same
discussion also applies to the relation between Iy, and I'_py/(—1)-

By work of [Lil9], the Seifert surface S induces a grading on T',;;. We always assume that S
has minimal intersections with I',/;. When the intersection number 05 - (sA — ru) is odd, then S
induces a Z-grading on T', ;. When 05 - (sA — ru) is even, we need to perform either a positive
stabilization or negative stabilization on S to induce a Z-grading, and the two gradings are related
by an overall grading shift of 1. To get rid of stabilizations, we can equivalently regard that, in this
case, the surface S induces a (Z + %)-grading. We write the graded part of T, /, as

(I‘T/57 Z) = ﬂ(_(Y\N(K))u _Fr/sa Sa Z)
withieZorieZ+ %, depending on the parity of the intersection number. From the construction

of grading in [Lil9], we have the following vanishing theorem due to the adjunction inequality.

Lemma 2.5. We have (T, 5,7) = 0 when

Irp —sq| — 1
5 .
The bypass exact triangle for sutured instanton homology was introduced by Baldwin-Sivek in
[BS22h, Section 4]. In [LY22, Section 4.2], we applied the triangle to sutures on knot complements
and computed the grading shifts. We restate the results by notations introduced before.

li| > g+

Lemma 2.6. For any n € Z, there are two graded bypass exact triangles

Yo
(I‘n,i+ %) e (Fn+17i)
(I‘#,i - %)
) L .
(Tnyi— %) - (Tyt1,19)
(Tpyi + =571)

where the maps are homogeneous with respect to the homological Za-gradings.
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Remark 2.7. The reason to use balanced sutured manifold with reversed orientation is because of
the above bypass exact triangles.

Remark 2.8. Note that if we do not mention gradings, the above triangles and the results in the
rest of this subsection also hold without the assumption that K is rationally-null homologous since
the proofs only involve the neighborhood of o(—Y\N(K)).

Corollary 2.9. For any large enough integer n, we have the following properties for restrictions
of maps.

(1) The map Y% ,,1|(Tn,4) is an isomorphism when i < "p_zq_l —g.
(2) The map Y" ,, 1|(Tn,i) is an isomorphism when i > g — "p_Tq_l.

(3) For any g — *P=1= Lgigme = L g —p, there is an isomorphism

(WL s) " 0 pr t (D) = (T +p).

n—1)p+q—1
<( )pq

(4) The map ¥~ _,,|(T—n,i) is an isomorphism when i —g.
(5) The map ¢, |(T—n,i) is an isomorphism when i > g — ("1)++ql
(6) For any g — “2HI= l<i< "p+q+1 — g — p, there is an isomorphism
(W) oI, (Papyd) = (Dopsi +p)-
Proof. 1t is a combination of Lemma and Lemma O

Definition 2.10. The maps in Lemma [2.6] are called bypass maps. The ones with subscripts +
and — are called positive and negative bypass maps, respectively. We will use + to denote one
of the bypass maps. For any integer n and any positive integer k, define

wn-&—k 1

n .
+ otk +ntk O 0 1/)J_r,n-H Iy = Dy

n [LY22, Section 4.4], we proved many commutative diagrams for bypasses maps, which we
restate as follows by notations introduced before.

Lemma 2.11. For any n € Z, we have the following commutative diagrams up to scalars.

Wi L
r, — >T, T, —2 =T,
wz’nJrl ¢n+73+2 w"+2 i,n
LA -
Tpig —— > Ty r,— " -T,
n

Proof. The first diagram follows from |[LY22, Lemma 4.33]. Note that the proof only used the
functoriality of the contact gluing map and did not depend on the assumption that K is rationally
null-homologous. The second diagram is obtained from the first diagram by changing the choice of
the framed knot. Explicitly, let K’ be the dual knot corresponding to I'y, 1. Let i/ = —(n+1)p+ A
denote its meridian. Then X = —p is a framing of K’. Applying the first diagram to K’, we will
obtain the second diagram for the original K. O

Lemma 2.12. For any n € Z, we have the following commutative diagrams up to scalars
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"Zbr n+1 E ,m+1
I ——Twn Ly ————Tun
1/’“,\ %7#1 1/’;n\ %nﬂ
r r
w+ n+1 r ;m+1
r, —* -7, r, — ~T,.,

L,

There are more bypass triangles involving more complicated sutures, which are obtained from
changing the choice of the framed knot as in the proof of Lemma 2111

Lemma 2.13. For a knot K €'Y and n € Z, there are two graded bypass exact triangles

¥ e
(Fn 1,Z+np q ]._‘271271,1')
M /
i (= 1)p a) Vi
n—1
w7 271 1

(Fn—lu T —

np q
Y2

To,i+ (n— 1)10 Q)

Lemma 2.14. For a knot K €'Y and n € Z, there are commutative diagrams up to scalars

w 2n271
+,n—1
r,——"" .1,, Lun, _ Vom r

n

= P, 2n—1
A 2n—1
;n—1 +, = 2 L,
-1
wi 2n—1 111"
)
I, ———=Tan +.p
n—1 n-l r —— FH
L S
rn— I, rn— I,

\ /Ml 1 w?x /n,nl
r,
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271 1 2n—1
,¢, 2
+, n 1 —,n—1

n 1| an 1 Fn—l ——> T
2
n—1 n—1 2n—1
k R I o, 2
n +.,m
%

Remark 2.15. The choices of positive and negative bypass maps in Lemma 2.14] seem to be different
from Lemma 21T and Lemma 212l But indeed they are the same up to changing the framed knot.
In particular, the grading shifts match

Suppose « is a connected non-separating simple closed curve on J(Y\N(K)), we can push «
into the interior of Y\N(K) and apply the surgery exact triangle associated to the surgeries along
a with respect to the framing induced by 0(Y\N(K)). According to [BS16a, Section 4], when «
intersects the suture at two points, the 0-surgery along « corresponds to a 2-handle attachment
along o and hence leads to the Dehn filling of Y\N(K) along a. We write

Yr/s = Iﬂ(fyfr/s(K))a

and in particular
Y, :=I*(-Y_,(K)) and Y := I*(-Y).

Lemma 2.16. For any n € Z, we have the following exact triangles.

n An_
Fn 1 Fn+1 Fu - Fn—l
N N
Y Y,

Remark 2.17. From |[BS16a, Section 4], we know the 0-surgery corresponds to a 2-handle attache-
ment and a 1-handle attachement. Hence Y in above lemma is indeed KHI™ (=Y, U), where U is
the unknot in —Y bounding an embedded disk. By [BS16a, Section 4], 1-handle attachement does
not change the closure of the balanced sutured manifold, and then there is a canonical identification
between KHI(—Y,U) and I*(—Y). Hence we can abuse the notations. The same discussion also
applies to Yy,.

Furthermore, we proved the following properties in |[LY22].

Lemma 2.18 (|JLY22, Lemma 3.21 and Lemma 4.9)). For any n € Z, we have the following
commutative diagrams up to scalars

er n+1 wn ,n+1
n+1
\ /+1 \ /+1
7l’+ n+1 P n+1
r, — ~T, r, — >T,

A Al A /m1
Y Y
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Lemma 2.19 (|JLY22, Lemma 4.17, Proposition 4.26, Lemma 4.29 and Proposition 4.32]). Let F,
and G,, be defined as in Lemmal210. Then for any large enough integer n, we have the following
properties

(1) The map G, is zero and F,, is surjective. Moreover, for any grading

_np—q—1 . <np—q71

<10 < —g—p+1,
D) 20 5 g—p

/

the restriction of the map

I
-

p

S
Il
o

s an isomorphism.
(2) The map F_, 11 is zero and G_,, is injective. Moreover, for any grading
_np+q-—1 <io< np+q—1

0

—g-p+1,
5 5 g-—»

the map
p—1
ProjoG_pn : Y — (P (T_n,io + i),
i=0
18 an tsomorphism, where
p—1
Proj:T'_, — @(I‘_n,io +1)
i=0
18 the projection.
The following lemma, is a special case of Proposition A1, which we will prove later.

Lemma 2.20. For any n € Z, let the maps H,, and ;1 be defined as in Lemmal2.10 and Lemma
respectively. Then there exist c1,cq € C\{0} so that

Hn = Cld}i,n-ﬁ-l + 021/127,”_'_1

2.3. Fixing the scalars. By construction, sutured instanton homology forms a projectively tran-
sitive system, which means all the spaces and maps between spaces are well-defined only up to
nonzero scalars. When the balanced sutured manifold is obtained from a framed knot as in the last
subsection, we can make some canonical choices to reduce the projective ambiguities.

Suppose K ¢ Y is a framed knot with the meridian x4 and the framing A. Fix a knot complement
Y\N(K). Let S{, S3, S3 be three circles. Take

Y, = (Y\N(K)) Uy, 81 x (83 x S5 — D?),
where ¢, is an orientation reversing diffeomorphism sending S1 to pu and 0(S3 x S3 — D?) to \. By
[KM10, Lemma 5.2], the manifold Y, is a closure of (Y\N(K),T,) with the distinguishing surface
T? = S} x Si. The circle S3 makes the pair (Y, 53) admissible.

For the suture I'),, we can similarly take

Yo = (Y\N(K)) Uy, S; x (83 x S5 — D?),
where ¢, is an orientation reversing diffeomorphism sending S{ to —nu + X and 9(Sy x S3 — D?)
to —u. Then Y, is a closure of (Y\N(K),T,,).
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For the suture l"zn;l, we can similarly take
?—2"2’1 = (Y\N(K)) Yoon 1 Sll x (521 x Si% - D2)7
2n-1

where ¢ 1 is an orientation reversing diffeomorphism sending St to (1 — 2n)u + 2\ and (S5 x
S — D?) to —nu + A. Then Y% is a closure of (Y\N(K),I‘%).

For (Y(1),4), we can simply take the connected sum Y#S] x S3 x Si, where the distinguishing
surface is S3 x Si. The circle S3 makes the pair (Y#S} x S3 x Si,53) admissible. We reverse
the orientations of the chosen closures when the orientations of the sutured manifolds are reversed.
Note that we do not choose canonical closures for Y, (K)(1) since we only care about the dimension
of its framed instanton homology.

After fixing the choices of closures, we can view I';, and Y as actual vector spaces and then
elements in them are well-defined. Strictly speaking, we also need to choose extra data such as the
metric and the perturbation on the closure to define the instanton Floer homology of the closure,
but different choices of metrics and perturbations now induce a transitive system of vector spaces,
from which we can construct an actual vector space. So we omit the discussion on those extra data.

The construction of bypass maps and surgery maps may not be realized as cobordism maps
between the chosen closures, but the construction of the projectively transitive system guarantees
the existence of such maps up to scalars. Now We make (non-canonical) choices of the maps to get
rid of the scalar ambiguities in commutative diagrams mentioned in the last subsection.

By Lemma 219 we can pick a large enough integer ng so that G_,, is injective and F,, is
surjective. Pick arbitrary representatives of maps

—no —no M M
G—n07F’ﬂ07w+)H Y= 7¢+7—n07¢—7—n0

and

—1
¢i7n+17 wi 2n—1
T

for all n € Z. By the first two commutative diagrams in Lemma 2.19 we can pick a representative
for G_,,+1 to satisfy the equation

G*noJrl = 1/’1,"3710“ o G*no
and pick a representative for @[1:7”_“”0 41 to satisfy the equation

— —no
Gngtt = 7™ 110 O

Then we can pick representatives of ¢’} , and ¢i,n for all n inductively to satisfy the commutative
diagrams in Lemma 2.12] without introducing scalars. Similarly, the representative of " , ., for
all n are determined by the first diagram in Lemma 211l The representatives of

1l " 1 2n—1
w—,?z 7¢+,n—17¢—,n—17¢_)%7 +,3z

are determined by Lemma 214
By the first commutative diagram in Lemma [2.79] we can pick representatives of G,, for all n
inductively to satisfy the equality

Gn = ijnl o Gn—l-
Now we verify the equality
Gp =", 0Gn1
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We can verify this equality inductively and we only deal with the case that n > ng. The other
case is similar. A priori, Lemma .18 implies that for our choice of representatives, there exists
c € C\{0} so that

Gn=c- Uﬂ_l)_nl oGp_1.
We need to show that ¢ has to equal to 1. Without loss of generality, we can assume that G,,_5 # 0
and assume that G,,_a(a) # 0 for some a € Y. Then

Gn(a) = ijnl © wﬁ;zz—l o Gp2(a)
(Lemmam) = wﬁjnl o wi;f_l o Gn—2(04)
(Inductive hypothesis) = 1/)7_1;11 0 Gp_1()
Hence ¢ = 1.
Then we only need to choose representatives of F,,. Since we have already chosen F,,, we can
pick F,,+1 to satisfy the equation
Fryt1 = wiﬂ’noﬂ o F,.
However, since we have already fixed the map wf?no +1, Lemma .18 implies that there exists
c € C\{0} so that
Foyp10 wT,’MH =c-Fy,

for which we cannot simply take as 1. Using a similar argument as above, we can pick representatives
of all F;, maps inductively so that

Foy1 =94 10 F, and Fpq1 09", 0 =c- F,.

Finally, we discuss scalars in Lemma 2.20l For any n € Z, we can pick a representative of H,, so

that
Hn = wi,n-&—l +Cn - wﬁ,n-ﬁ-l

To get rid of this extra scalar c¢,, we consider two cases.

Case 1. There exists an n so that G,,1 # 0 and F,, # 0. Take o € Y so that G,,+1(a) # 0 and
take © = G (), we know that

YY1 (@) +en Ul (@) = Hi(z) = 0.

From our choice of G,,, we also know that

wi,nJrl(x) = wﬁ,nqu(:E) = Gn+1(a) # 0.

Hence ¢, = —1. Also from the assumption that F,, # 0, we can assume that F,(y) # 0. As a result,

Frpyio0 ¢i,n+l(y) = Fn(y) #0and Fjqq 0 7/}E,n+1(y) =C- Fn(y) #0
On the other hand, we know that
(L4 c-cen)Fa(y) = Fag1o (W} i +en 02 0 00)(y)
=lpt1 0 Hn(y)
=0.
As a result, we have 1 + c¢- ¢, = 0. Hence ¢ = 1.
Case 2. For any integer n, either G,,41 = 0 or F,, = 0. (For example, any knot inside S® falls

into this case.) Take n; to be the largest integer so that G, +1 # 0. We know from the above
argument that ¢, = —1 for all n < ny.
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For n > nq, define a grading perserving isomorphism
tn Iy, —» T,

so that for any « € (T',,, ), we have

i—n=l_g
27J

tn(z) = ¢ -2 where j = | »

Define a new H,, and F,, by
ﬁn = E[n = wi,n-&—l - wﬁ,n-#—lv and ﬁ‘” = Fpon.

It is then straightforward to check that for any n > n;, we have an exact triangle

Fn o Fn+l
k Al
Y

and equations
~ . ~ ~ N ~
Foi10 1/)+1n+1 =F, and F,41 0 1/)77n+1 =F,.

As a result, for n > ni, we can use the new maps fNIn and I?'n to form the surgery triangle. From
now on, we write them simply as H,, and F,.

Convention. From the above discussion, when K < Y is a rationally null-homologous knot, we
can assume the first commutative diagram in Lemma 21T and all commutative diagrams in Lemma
212 Lemma 2.4 and Lemma 2.I§ hold without introducing scalars. Moreover, we can assume
Hy =4 1 — " 4y forall n.

2.4. Algebraic lemmas. In this subsection, we introduce some lemmas in homological algebra.
All graded vector spaces in this subsection are finite dimensional and over C and all maps are
complex linear maps. For convenience, we will switch freely between long exact sequences and
exact triangles.

From Section , we know the sutured instanton homology is usually Z @ Zs-graded, where
we regard the Zs-grading as a homological grading. Many results in this subsection come from
properties of the derived category of vector spaces over C, for which people usually consider cochain
complexes. However, for a Zs-graded space there is no difference between the chain complex and
the cochain complex. Hence by saying a complex we mean a Zg-graded (co)chain complex, though
all results apply to Z-graded cochain complexes verbatim.

For a complex C' and an integer n, we write C™ for its grading n part (under the natural map
7 — 7). With this notation, we suppose the differential dc on C sends C™ to C"*1. For any
integer k, we write C'{k} for the complex obtained from C by the grading shift C{k}" = C"**. We
write H(C,d¢) or H(C') for the homology of a complex C with differential dc. A Zo-graded vector
space is regarded as a complex with the trivial differential.

For a chain map f : C' — D, we write Cone(f) for the mapping cone of f, i.e., the complex
consisting of the space D @ C{1} and the differential

dConc(f) = [dD 7f ] .
0 —d¢
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Then there is a long exact sequence
.= H(C) - H(D) - H(Cone(f)) L H(C){1} — ---

where ¢ sends z € D to (z,0) and p sends (z,y) € D @ C{1} to —y. If differentials of C' and D are
trivial, then we know

(2.1) H(Cone(f)) = ker(f) @ coker(f).

Remark 2.21. Our definitions about mapping cones follow from [Wei94], which are different from
those in |OS08, |0S11)].

Note that the derived category is a triangulated category, so it satisfies the octahedral lemma
(for example, see [Wei94, Proposition 10.2.4]).

Lemma 2.22 (octahedral lemma). Suppose X,Y,Z, X" Y’ Z' are Zs-graded vector spaces satisfy-
ing the following long exact sequences

SxLyvhz oo xiy.
xSz My L oxay
SsYLzox' Ly{y .

Then we have the fourth long exact sequence
._,Z/i,y’i,X’MZ/{l}_,...
such that the following diagram commutes

(2.2)
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where we omit the grading shifts and the notations for maps h,l,j. We can also write (223) in
another form so that there is enough room to write the maps

(2.3) 7 AN
y Ay/ 1
-
N .

The map ¢ and ¢ in (23] can be written explicitly as follows. By the long exact sequences in
the assumption of Lemma [2.22] we know that Z’, X', Y’ are chain homotopic to the mapping cones
Cone(f), Cone(g), Cone(g o f), respectively. Under such homotopies, we can write

VY @X{1} > Z@® X{1}
Yy, z) = (9(y), x)

and
o Z®X{1} > ZdY{l}
¢(z,x) = (2, f{1}(z))

However, the chain homotopies are not canonical, and hence the maps 1 and ¢ are also not
canonical. Thus, usually we cannot identify them with other given maps. Fortunately, with an
extra Z-grading, we may identify H(Cone(¢)) with H(Cone(¢’)) for another map ¢’ : Y’ — X'.

First, We introduce the following lemma to deal with the projectivity of maps (i.e. maps well-

defined only up to scalars). Note that the Z-grading in the following lemma is not the homological
grading used before.

Lemma 2.23. Suppose X and Y are Z-graded vector spaces and suppose f,g : X — Y are
homogeneous maps with different grading shifts ki and ke. Then Cone(f + g) is isomorphic to
Cone(cy f + cag) for any c1,ca € C\{0}.

Proof. For simplicity, we can suppose k1 = 0 and ko = 1. The proof for the general case is similar.
For i,j € Z, we write (X, i) and (Y, j) for grading summands of X and Y, respectively. Suppose T
is a automorphism of X @Y that acts by

c _ c .
ci%Id on (X,i) and ﬁld on (Y, 7).
1 1

Then T is an isomorphism between Cone(f + ¢) and Cone(cy f + c29). O

Then we state the lemma that relates the map ¢ in Lemma 2:22] to another map ¢’ constructed
explicitly.
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Lemma 2.24. Suppose X,Y,Z, X' Y' are 7 @ Zs-graded vector spaces satisfying the following
horizontal exact sequences.

n

z Yy’ X{1}
= || ¢'=a’+b f{1}=a+b
A L y{n

where the shift {1} is for the Zs-grading. Suppose ¢ : Y' — X' satisfies the two commutative
diagrams and suppose ¢ ' Y' — X' satisfies the left commutative diagram. Suppose | and ' are
homogeneous with respect to the Z-grading. Suppose f{1} = a+b and ¢/ = o' + V' are sums of
homogeneous maps with different grading shifts with respect to the Z-grading. Moreover, suppose
the following diagrams hold up to scalars.

4 4

Y’ X{1} vy — L o x{1
a’ a b’ b
X —— > V{1} X ——Y{1}

Then there is an isomorphism between H(Cone(¢)) and H(Cone(¢')).

Proof. Since ¢ and ¢’ share the same domain and codomain, it suffices to show that they have the
same rank. Fixing inner products on Y’ and X’ so that we have orthogonal decompositions

Y =Im(h')®Y” and X’ = Im(¢oh') ® X",

By commutativity, we know both ¢ and ¢’ send Im(h') onto Im(¢ o h'). Hence if we choose basis
with respect to the decompositions so that linear maps are represented by matrices (we use row

vectors), then we have
_|A B , |4 B
¢ - [0 C] a‘nd ¢ - [ 0 Cl] 9

where A = A’ : Tm(h') — Im(¢ o A') has full row rank. Then it suffices to show C and C’ have the
same row rank.

By the exactness at Y/ and X', we know the restriction of I’ on Y” is an isomorphism between
Y” and Im(!") and the restriction of [ on X” is an isomorphism between X” and Im(l). By commu-
tativity, we know that both a and b send Im(!’) to Im(!) and

rowrank(C) = rank(f{1}|Im({")) and rowrank(C’) = rank((cia + c2b)[Im(l"))

for some ¢y, c2 € C\{0}. Since [ and !’ are homogeneous, there exist induced Z-gradings on Im(!)
and Im({’). The maps a and b are still homogeneous with different grading shifts with respect to
these induced gradings. Then we can apply Lemma[2.23]to obtain that the ranks of the restrictions
of f{1} = a+b and cra + c2b on Im(l’') are the same. O

3. INTEGRAL SURGERY FORMULAE

Suppose Kisa (framed) rationally null- homologous knot in a closed 3-manifold Y. Given m e Z,
suppose K_,, is the dual knot in the manifold Y_,,(K) obtained from Y by (—m)-surgery along
K. In this section, we propose a conjectural formula calculating I*(—Y_,, (K)) analogous to the
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integral surgery formula in Heegaard Floer theory |OS08, |OS11]. We also propose a strategy to
prove this formula, but we could only realize the proof for Y = S in Section [{ because we have to
use the facts that dimc I#(S®) = 1 and S® has an orientation-reversing involution in some steps.

3.1. A formula for framed instanton homology. In this subsection, we propose an integral
surgery formula based on sutured instanton homology, and package it into the language of bent
complexes in the next subsection.

Suppose K c Y is a framed rationally null-homologous knot and we adapt notations introduced
in Section Define

2m+42k—1
+ m+k P .
7Tm k- \I/+ m—1+2k o wi,erk : I‘27n+22k71 - Fm+2k—1

and write wiz as the restriction of -, on (T'zm+2x-1,4). From Lemma 23 and Lemma we
: : 2

can check that Wi, . shifts grading by +(mp—q)/2. Then we can state the integral surgery formula.

Theorem 3.1. Suppose m is a fized integer such that mp — q # 0. Then for any large enough
integer k, there exists an exact triangle

7'rm k+7r
F2m+2k 1 %I‘erQk 1

N,

Y, = H(Cone(r,), . + 7, 1))

Hence we have an isomorphism

Remark 3.2. Suppose p and A are the meridian and the longitude of the knot K. Then mp —q # 0
is equivalent to the fact that —mu + A is not isotopic to a connected component of the boundary
of the Seifert surface. In particular, if K is null-homologous, this means m # 0.

In the rest of this subsection and in the next subsection, we state the strategy to prove Theorem
BIl and leave the proofs of some propositions in the rest sections. An important step is to apply
the octahedron axiom mentioned in Section 2:4] to the following diagram:

(31) I‘2m+22k:71
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To show the dotted exact triangle exist, We need to prove the following three exact triangles

(3.2) I#(—-S3, . (K))

|

r, \
Fm—l
(3 3) I‘2m+22k71
r, L1k @ Ln—14k
(3.4) Ltk

|

m—1+k @ ]-‘mflJrk

Fm—l
and the following commutative diagram

(3-5) Ly
N\
| R

Then the octahedral lemma will imply the existence of the dotted triangle and ensure that all
diagrams in (BI]) other than exact triangles commute.

Then we will use Lemma to identify the map coming from the octahedral lemma with
7r:7[h k T T - We also need the following two extra commutative diagrams, where the maps other

I‘mflJrk @ I‘mflJrk

+ —
than 7 , + 7, come from (B.I)).

(36) I‘2m+22k:71

.
w;“

| ISy

|

| PSS TRATCN RS
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(37) F2m+22k 1

+
m,

T e T Tom ke
////// Lo—142k

Indeed, when applying Lemma [2.24] we can prove some weaker commutative diagrams involving
7r:7rI 1 separately.

3.2. A strategy of the proof. In this subsection, we provide more details of the strategy men-
tioned in Section Bl For simplicity, we fix the scalar ambiguities of commutative diagrams as in
Section 23] To write down the maps, we redraw the octahedral diagram (B.1]) as follows:

(3.8) Y, - Ly,
el v
I
/ / /¢)+1m71
m—1 N u
+ m—1+k’ Tomyor 1 +1/)7,m71
ym— 1 -z
H —,m— 1+k7
+ e

To14k @14k |

,(Z):U' \I/m 1+k
—,m—1+k> —,m—1+2k
]-‘,u M ) m—14+k I‘m71+2k
+,m—1+k — ok
where
1/}m+k 1 1/}m+k 1
2m+2k 1 2m+2k 1.

The reader can compare ([B.8) with (22) and [23). We omit the term corresponding to Z’{1}
because there is no enough room and the maps involving it are not important in our proof.
The first exact sequence of (3.8

I ®
w+,7n71+w7,m71
LI A

(3.9) T, T, 1—-Y .—T,

A—mf

follows from the second exact triangle in Lemma 2.J61 Though the map A,,—1 may not be the
same as the sum z/;iymA + ™ 1, we can use the following proposition and Lemma 2.23] (another
special case of Theorem ELT) to identify Cone(A,,—1) with Cone(y’y ,, | + 4" ;). Here we use
the assumption that mp — g # 0.
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Proposition 3.3. Suppose A,,_1 is the map in Lemmal210. For any integer n, There exist scalars
c1,ce € C\{0} such that

Ap i =l o+t
The exactness at
L1 @14k

in the second and the third exact sequences are both special cases of the following proposition,
which will be proved in Section [5.1] by diagram chasing.

Proposition 3.4. Given n € Z, ko € N, suppose cg € C\{0} is the scalar such that the following
equation holds
‘Ijn+k0 o ‘Ijn ko — CO\I/n+k0 ° ‘Ijn

+,n+2kg ) —,n+2ko +,n+ko"
Then for any c1,ca, c3, cq satisfying the equation
C1C3 = —C2C4Cp,
the following sequence is exact
n n n+k n+k
(cl\ll+,n+k0702\p7,n+k0) C3q}—,n£2ko+c4q}+,n£2k0

Fn Fn+k0 @ Fn+k0

Remark 3.5. The exactness at the direct summand for the second exact sequence (the one involving
I';) might not be so clear from Proposition B4l Explicitly, we apply the proposition to the dual
knot K’ corresponding to I'y,4x with framing ' = —p and n = 0, kg = 1. Note that by convention
in Section [2.3] we have ¢g = 1.

Fn+2k0

The exactness at T';, and I'2m+26-1 in the second exact sequence of (B.8])
2

wwn#»kfl _w7n+k71

_ 2m+42k—1 + 2m+2k—1
’ 2 ’ 2

LT
(3.10) I‘M( mortk Ve more) Lr14k @ Lm—14k

I
I‘2m+2k—1 b I‘M
2

will also be proved by diagram chasing. We can construct the map I’ explicitly by the composition
of bypass maps

2m+4+2k—1 2m+2k—1
. k k e —
I':= wTIL © w-ﬁ-,mi—k = wT,t °© w—,ma—k ’
where the last equation follows from Lemma 2.T4] and the convention in Section 2.3l The following
proposition will be proved in Section by diagram chasing.

Proposition 3.6. Suppose I is constructed as above. For any c1,ca,c3,cq € C\{0}, the following
sequence is exact

+k—1 +k—1
C3¢1n 2m42k—1 +C4¢T 2m42k—1 ,

’ 2 ’ 2

l
F 2m+2k—1 —> I‘H
2

| SRS ACON RS

(ead” Ly 2l k)

| PYSRTACCR R
Remark 3.7. In the proof of [LY21bh, Theorem 3.23|, we obtained a long exact sequence

(wi,nflﬂpli,nfl)

I‘u r..er, 11— I‘2"2_*1 - I‘u

by the octahedral lemma. However, we did not know the two maps involving I‘2n271 explicitly. Thus,
the second exact sequence here is stronger than the one from octahedral lemma.
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Remark 3.8. The reason that Proposition [3.6] holds for any choices of ¢y, ¢z, ¢3, ¢4 is because

ker((CWﬁ,m_Hk, 02¢i)m_1+k)) = ker(clwl_t7m_1+k) N ker(CQwi7m_1+k)
and
Im(03th§:%k—l + C4¢T-§Z:;k—l) = Im(03thZI;k—l) + Im(c4¢TtZ:;k—l )a
’ 2 ’ 2 2 ’ 2

P

where the right hand sides of the equations are independent of scalars.

The exactness at T'y,—1 and I';,,—1 19 in the third exact sequence of ([B.8])

(\IIXHI 1+k s 1+k) Wm*l+1k+2k_ T71+1k+2k l
,m— 1T — m— —,m— ,m—
(3.11) Ty 14 @14k 1o = it

is harder to prove since the map [ cannot be constructed by bypass maps. We expect that there
are many equivalent constructions of I and we will use the one for which the exactness is easiest to
prove. Even so, we only prove the exactness with the assumption that k is large. See Section
for more details.

Proposition 3.9. Suppose c1, c2,c3,cq € C\{0} and suppose kg is a large integer. For any n € Z,
there exists a map | such that the following sequence is exvact

n+k n+k, n n
—,nEQkO +c4\1,+,n£2k0 1 (Cl‘p+,n+k0702‘p,,n+k0)
Fn+2ko e Fn Fn+ko ® Fn+ko

c3¥

Fn+ko @ Fn+kg

Remark 3.10. In the first arXiv version of this paper, we only proved Proposition for knots

in S% because we had to use the fact that dimc I*(—S%) = 1 and S® has an orientation-reversing

involution. The construction of [ for knots in general 3-manifold are inspired by the original proof
for $3 and the proof in Section [{is a generalization of the previous proof.

Remark 3.11. By the same reason in Remark B.8 the coefficients in Proposition are not impor-
tant.

Then we consider the commutative diagrams mentioned in Section Bl By Lemma and
Lemma 2.12] we have

-1 -1
(\I/T,m—l-}-kv ‘IJTm—1+k) © (wi,mfl + wﬁ,mfl) = (1/}l—t,m—1+k:71/)i,m—l+k)’
which verifies the commutative diagram in the assumption of the octahdral axiom.
Define

, + J,»k 2m+42k—1 +k 2m+42k—1
A - _ m 2 m 2

O =Tkt Tk = ik OV e T Y ok OV e
By Lemma 213 and Lemma [Z.14] with n = m + k, we have

/ / m-+k 2m+2k—1 m-+k 2mi2k—1 m+k—1 m+k—1
_ 2 2 — -
¢ oh _(\I]+,m—1+2k © w—,mﬂc + \I]—,m71+2k © ¢+,m+k )o (w_y2m+22k—1 - 1b_,_)2m+22k—1)
:\I]erk ° w2m+22k71 merkfl _ \IJerk ° @b% merkfl
—m—1+2k ° Y4 m+k -, 2m+2k=1 +m—1+2k ° Y- m+k +,2mt2k=1
_aym+k m+k—1 _ \ym+k m+k—1
_kllf,mfl+2k © w*,erk \I]+,m71+2k © er,erk
_aym—1+k _ gm—1+k
_‘IJ—,m—1+2k \I/+,m—l+2k:

This verified the second commutative diagram mentioned in Section B.11
Finally, we state a weaker version of the third commutative diagram mentioned in Section [3.1]
which is enough to apply Lemma 224 The following proposition will be proved in Section [l

Proposition 3.12. Suppose ' and | are the maps in Proposition and Proposition [3.9. Then
there are two commutative diagrams up to scalars.
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4 U

I‘2m+2k71 —_— I‘,LL I‘2m+2k71 —_— I‘,LL
+ H - ®
Lﬂ—7n,k J/ +,m—1 jﬂ'm’k [w’ml
l l
I‘mfl+2k - I‘mfl I‘mfl+2k - I‘mfl

Proof of Theorem [31l We verified all assumptions of the octahedral lemma (Lemma 222]) for the
diagram (B.8]). Hence there exists a map ¢ so that

Y., = H(Cone(¢)).

We also verified all assumptions of Lemma 2:24] for ¢’ = W; x T 7, . Thus, we have

H(Cone(¢')) =~ H(Cone(¢)) = Y.
Then the desired triangle in the theorem holds. O

3.3. Reformulation by bent complexes.

In this subsection, we restate Theorem [B.I] by the language of bent complexes introduced in
[ILY21b]. Suppose K is a rationally null-homologous knot in a closed 3-manifold Y. We still adapt
notations and conventions in Section and Section

Putting bypass triangles in Lemma [2.6] for different n together, we obtain the following diagram:
(3.12)

n—1
w+ n+1 w+ n w+ n—1
n+1 n 1 n 2

L Y L
1 wn n+l.

r,.— | R
1/13,"2,1 " 1/}3 ! w* ,n+1

n+1

where the Z-grading shift of ¢} , owf“_hu is +p for any k € Z. From (812), we constructed in [LY 211,

Section 3.4] two spectral sequences {F, i,dr +}r>1 and {E, _,d, _},>1 from '), to Y, where d, +
is roughly

(3.13) Yk 9 o (Wh har) TO Y oy, for any ke Z.

The composition with the inverse map is well-defined on the r-th page and the independence of k
follows from Lemma [2.12 The Z-grading shift of d,. + is +rp. By fixing an inner product on I';,
we then lifted those spectral sequences to two differentials d and d_ on I';, so that

HT,,dy)=H, d)=Y.

In such way, the inverses of \I/’i g+ are also well-defined, which we will use freely later.
Then we propose an integral surgery formula for Y,, using differentials d; and d— on I',. To
state the formula, we introduce the following notations.
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Definition 3.13 (|[LY21b, Construction 3.27 and Definition 5.12]). For any integer s, define com-
plexes
B*(s) == (DTy:s + kp),ds), B*(>s):= (DT s+ kp),dy),
keZ k=0
and B~(< s) := (P (T, s + kp),d-).
k<0
Define
It(s): BT (>s) — B (s)and I (s): B~ (< s) —» B~ (s)
to be the inclusion maps. We also write the same notation for the induced map on homology.

Remark 3.14. By Lemma [2Z5] we know nontrivial gradings of I',, are finite. Then for any large
enough integer so such that
-1 -1

ands+sop>g+pT,

s—sop<—g— "2
we have
B (s) = BY(< s—sop) and B (s) = B~ (= s + sop).
In such case, I (s — sop) and I~ (s + sop) are identities.

By splitting the diagram (8.12) into Z-gradings, we can calculate homologies of complexes defined
in Definition B.13]

Proposition 3.15. Suppose n € Ny and i is a grading. Fix an inner product on I'y. If i >
g+ (p—1)/2 — np, then there exists a canonical isomorphism

“1)p —
H(B*(> 1)) = (Tnyi + W).
Ifi<—g—(p—1)/2+ np, then there exists a canonical isomorphism
—1)p—
H(B~ (<)) = (Tpyi— W).

Proof. The proof is similar to that of |[LY21b, Lemma 5.13]. Following the notations in |[LY21b,
(3.9) and (3.10)], if
Z>’z¢nax7nq:g+(p71)/2fnpv

then I‘fj+ = 0 (the corresponding grading summand of T'y) and the isomorphism follows from
the convergence theorem of the unrolled spectral squence [LY21b, Theorem 2.4] (see also |Boa99,
Theorem 6.1]). Note that the unrolled spectral sequence induces a filtration on I';,, and the homology
is canonically isomorphic to the direct sum of all associated graded objects of the filtration. Then
we use the inner product to identify the direct sum with the total space I';,. The other statement
holds by the same reason. O

Definition 3.16 ([LY21b, Construction 3.27 and Definition 5.12]). For any integer s, define the
bent complex

A(s) == ((P(Tpu, s + kp), ds),
keZ

where for any element x € (T'),, s + kp),
d+ (I) k > O,
ds(z) = ds(z) +d_(z) k=0,
d_(z) k <O.
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Define
7t(s): A(s) —» Bt (s) and 7 (s) : A(s) — B~ (s)

by

z k=0,

0 k<0,

x k<0,

™ (s)() ={ 0 i

where z € (T, s + kp). Define

and 7 (s)(z) = {

™ P A(s) > P BE(s)

SEL SEZL

by putting 7% (s) together for all s . We also use the same notation for the induced map on
homology.

Remark 3.17. Similar to Remark B14] by Lemma 2.5] we know nontrivial gradings of I',, are finite.
Then for any large enough integer sy such that sg > g + (p — 1)/2, we have

A(so) = B~ (s0) and A(—sp) = BT (—s0).
In such case, 77 (s9) and 7% (—sg) are identities.
Now we state the integral surgery formula in the above setup.

Theorem 3.18. Suppose m is a fized integer such that mp — q # 0. Then there exists a grading
preserving isomorphism

En: DH(B(s)) = @ H(B (s +mp —q))

SEZ SeZ
so that

Y,, = H(Cone(w_ +Emont (P H(A(s) — @H(B_(s))))

SEZL SEL

Proof. By Remark[3.IT we only need to consider the maps 7+ (s) for |s| smaller than a fixed integer.
For such s, we can apply the following proposition.

Proposition 3.19 ([LY21b, Proposition 3.28]). Fiz m, s € Z such that |s| < g+ ”2;1. For any large

integer k, fix inner products on T zmi2k—1 and Tyy—142k. Then there exist sq, s;, 55, s;,r, 53 € Z s0
2

that the following diagram commutes

t(s)

H(A(s)) H(B*(s))

e

>~

i

s1
T,k

(F 2m+22k71 , 81) —_— (I‘m71+2k7 S;_r)

where 7251 are maps defined in Section 31 that factor through (T yr, s3).

m,k
Remark 3.20. The maps 7 (s) factor through I%(s) constructed in Definition We write

7t (s) = It (s) om®’(s).



26 ZHENKUN LI AND FAN YE

This corresponds to the factorization about (T, 4k, s%) in PropositionB.19 (we fix an inner product
on Iy, 11 to apply Proposition BIH), i.e., the following diagrams commute

7 (s) I*(s)

H(A(s)) H(BY (> s)) H(B*(s))

2m+2k—1 [ |
2 ‘Ilerk

T ol
(FLgkflasl) s (Tonyh s8) — 2 (T 12k s3)

l1e

17(s)

H(B™(s))

I

173
-
11

w2m+22k71 \I,m+k
+,m+k _ —,m—1+42k _
(Fm+k7 So ) > (Fm—l+2k7 S3 )

(I‘L;k*lasl)

From the calculation in [LY21H, Remark 3.29] (we replace n and ! there by m + k and k — 1,
and note that there is a typo about sign in the first arXiv version of [LY21H]), the difference of the
grading shifts is

si—s3=m+k—(k—1)—1)p—qg=mp—q.

Note that the notations in this paper and [LY21H] are different (c.f. Remark [23)).
Then we can construct the isomorphism

En: DH(B*(s)) = @D H(B (s +mp —q))

SEZ SEZ
by identifying both H(B¥(s)) and H (B~ (s+mp—q)) with (T'y,—142k, 53 ). Since we only care about

integer s with |s| smaller than a fixed integer, we can take a large enough integer k to construct
the isomorphism =,,. A priori, this isomorphism depends on inner products on

I‘l“ I‘2m+22k—1 , Fm—l+2k and Fm+k'
Then we have
H(Cone(r~ +E, 0n")) = H(Cone(r,, . + 7 1) = Yo,

where the last isomorphism comes from Theorem [B.11 O

Remark 3.21. Theorem B18]is slightly weaker than Theorem Bl Indeed, when we use the integral
surgery formula to calculate surgeries on the Boromean knot in the companion paper [|, we have
to study the H;(Y) action on sutured instanton homology, where Y = #2"S! x S? is the ambient
manifold of the knot. This action vanishes on I';, so vanishes on the bent complex. But it is
nonvanishing on 'y, and I';,_110; and we use this information to realize the computation. This
issue for the bent complex might be resolved by introducing some Ey-pages for differentials d; and
d_ so that the action is nontrivial on Eyp-pages.
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3.4. A formula for instanton knot homology. The third exact sequence ([B.IT]) implies

Lo = H(Cone(W™, 1HE o) — W™ 14 )

for any large enough integer k. We can remove the minus sign by Lemma 223l In this subsection,
we restate this result by the language of bent complexes. The formula is inspired by Eftekhary’s
formula for knot Floer homology HFEK [Eft18, Proposition 1.5] (see also Hedden-Levine’s work
[HL21]). Since m can be any integer, we replace m — 1 by m.

Theorem 3.22. Suppose m,j € Z. Let

m—1)p —
J R L R

Then there exists an isomorphism

By H(BT (7)) = H(B™(j7))

—m,j

so that

(T, j) = H(Coneuo) LEL oI  H(B (<) @ H(B (> 7)) H(B(jm).

—=m,j
Proof. As mentioned before, we have

Ty, = H(Cone(W™F* , —WHr 1)) = H(Cone(W™7F , + WTHE )

for any large enough integer k.

Since bypass maps are homogeneous, the above mapping cone splits into Z-gradings (or (Z + %)-
gradings). Hence we can use it to calculate (I';,,j). By Lemma 26 the corresponding spaces
are

(ot + ) @ (Pt — ) and (Tonsar, )

By Proposition 3.5 by fixing inner product on I'y, 4, we know that

.k _, . -1
(Coviind + %) = H(B™(<37)) for j + kp < —g — Fo= + (m + k)p
and
.k _ ) .k -1
(Conisd = %) = HB™(2 %)) for j = o > g + T = (m + k.

Since m is fixed, when k is large enough, we know that any j with (T',,, j) nontrivial satisfies the
above inequalities. By Proposition .15 again (fixing an inner product on I'y, 49k ) and Remark B.14]
for k large enough, we know that

(Trm2k, ) = H(B™(j7)) = H(BT (7))

By unpackaging the construction of differentials d; and d_ in [LY21b, Section 3.4], we know that

and the restrictions of maps U™, .o, and W' ... on the corresponding gradings coincide the

maps induced by the inclusions I~ (57) and I (5) under the canonical isomorphisms, respectively.
Suppose

= H(B*(j*) = H(B~(j7))

m,
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is the isomorphism obtained from identifying both spaces to the corresponding grading summand
of I'y,42r. Note that it depends on inner products on I'y,, I'yyx and 'y, qor. Then we know that

m . kp . kp
H(Cone(W™ ko + Wk (T j + o) @ (Tongkrd — =)

(T ) :
H(Cone(I™(j7) + 0 17 (1))

lle

lle

4. DEHN SURGERY AND BYPASS MAPS

In this section, we prove a generalization of Lemma and Lemma [33]

Suppose (M, ) is a balanced sutured manifold and o = M is a connected simple closed curve
that intersects the suture v twice. There are two natural bypass arcs associated to «, which lead
to two bypass triangles (c.f. [BS22b, Section 4])

SHI(
SHI(

M”Y3

SHI(~M

M7 772)

where 2 and <3 are the sutures coming from bypass attachments. Note the two bypass exact
triangles involve the same set of balanced sutured manifolds but with different maps between them.
Let (My,~0) be obtained from (M,v) by attaching a contact 2-handle along «. From [BS16h,
Section 3.3], it is shown that a closure of (—Mjy, —7) coincides with a closure of the sutured
manifold obtained from (—M, —v) by 0-surgery along « with respect to the surface framing. Hence
there is also a surgery exact triangle (c.f. [LY22, Lemma 3.21])

Hq

@(7‘]\47 77) @(7]\45 7'-)/2)

~—

SHI(—Mo, —70)
The map H, is related to the bypass maps 4 as follows:
Proposition 4.1. There exist c¢1,co € C\{0}, so that
Hy = a1y + ey

Remark 4.2. The proof of Proposition [£.1] is obtained during the discussion with John A. Baldwin
and Steven Sivek.

Proof of Proposition [{-1 Let A < dM be a tubular neighborhood of & = dM. Pushing the interior
of A into the interior of M to make it a properly embedded surface. By a standard argument in
[Hon00], we can assume that a collar of dM is equipped with a product contact structure so that
~ is (isotopic to) the dividing set, « is a Legendrian curve, A is in the contact collar, and A is a
convex surface with Legendrian boundary that separates a standard contact neighborhood of « off
M. The convex decomposition of M along A yields two pieces

M=MuYV,
A
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where M’ is diffeomorphic to M and V is the contact neighborhood of a. It is straightforward
to check that after rounding the conners the contact structure near the boundary of M’ is still a
product contact structure with 0M’ a convex boundary. Let v be the dividing set on dM’. Also,
after rounding the conners the contact structure on V = S x D?, we suppose 0V is a convex surface
with dividing set being the union of two connected simple closed curve on 0V of slope —1. When
viewing V as the complement of an unknot in 52, the dividing set coincides with the suture I'; < V,
so from now on we call it T';. By the construction of gluing map in [Lil8H], there exists a map

Gy : SHI(—M’, —') @ SHI(~V, —T';) — SHI(~ M, —).

As in |Lil8b], the map G; comes from attaching contact handles to (M’,~") u (V,T'1) to recover the
gluing along A. From [Lil9, Proposition 1.4], we know that

SHI(~V,-Ty) = C.

Note that M’ and M are both equipped with the product contact structure near the boundary.
From the functoriality of the contact gluing map in |Li18b], we know that G; is an isomorphism.
Now both the (—1)-surgery along a push off of @ and the bypass attachments can be thought of as
happening in the piece V. Note that the result of both (—1)-surgery and the bypass attachments
for I'; is I'2. Hence we have the following commutative diagram.

(4.1) SHI(—M', —') ® SHI(—V, ~T'y) ——*— SHI(— M, —7)

Id@Ha H,

SHI(—M', —') ® SHI(~V, ~T's) ——*—= SHI(~ M, —7,)
where ﬁa denotes the surgery map for the manifold V and G5 is the gluing map obtained by
attaching the same set of contact handles as G;. A similar commutative diagram holds when
replacing H, and H, by v+ and

ts : SHI(=V, ~T'1) — SHI(~V, ~T)
in (@), respectively.
Since G is an isomorphism, to obtain a relation between H, and 1, it suffices to understand
the relation between H, and ¢4. From |Lil9, Proposition 1.4], we know that

SHI(—V, —T'y) = C*.
Moreover, the meridian disk of V' induces a (Z + %) grading on SHI(—V, —T's) and we have

SHI(~V, ~T;) = SHI(~V, T, ) @ SHI(~V, ~T, ).

with 1 .
SHI(-V, ~T,5) = SHI(~V, -T2, ~3)

lle

C.

Let
1eSHI(-V,-T'1) =C
be a generator. In [Lil9, Section 4.3] it is shown that

(1) € SHI(—V, T, %) and v, (1) € SHI(—V, —T'5, %)
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are nonzero. Also, when viewing V as the complement of the unknot U, there is an exact triangle

Hao

(4.2) SHI(-V,-T) SHI(—V,—T')

I#(—S3)

as in Lemma 216 Comparing the dimensions of the spaces in (£2), we have G; = 0 and H, is
injective. From the fact that 77(U) = 0, we know from |GLW19, Corollary 3.5] that

1
Fy|SHI(—V, —T, 5) # 0 and Fb|SHI(—V, Ty, —2) # 0,

3)
By the exactness in (@), we have ker(F) = Im(H,) and then Hg(1) is not in SHI(—V, —T'y, + ),
i.e., it is a linear combination of generators of SHI(—V, —T's, i%) Hence we know that there are
1, c2 € C\{0} so that

Ho(1) = c1, (1) + catp_(1).
Then the proposition follows from the commutative diagram (@.1]). O

In Remark [[L3] we discussed the ambiguity coming from scalars. It is worth to mention that
such ambiguity already exists in instanton theory. For example, if M is the complement of a knot
K < $% and ~ consists of two meridians of the knot, which we denote by I',,, we can pick « to be
a curve on 0(S*\N(K)) of slope —n. Then we have a surgery triangle:

Hy

ﬂ(fMa 7F,u) @(7]\47 7Fn71)

\ /
I(=52,,(K))

Note this triangle is not the one from Floer’s original exact triangle, but the one with slight mod-
ification on the choice of 1-cycles inside the 3-manifold that represents the second Stiefel-Whitney
class of the relevant SO(3)-bundle; see |[BS21, Section 2.2] for more details. Floer’s original exact
triangle, on the other hand, yields a different triangle

H’

SHI(—S3\N (K SHI(—S3\N(K), —T'n_1)

\/

where p ¢ —52 (K denotes a meridian of the knot. Note the difference between H,, and H/, is that
they come from the same cobordism but the SO(3)-bundles over the cobordism are different. The
local argument to prove Proposition 1] works for both H, and H/,. Hence there exists non-zero
complex numbers ¢y, ¢z, ¢}, ¢5 so that

H, = Cl‘/’i,n + 021/’&,7171 and H('l = Cllwin + c’y/)infl

where the maps

VY oy SHI(=SP\N(K), ~Ty) — SHI(=S*\N(K), ~Tn-1)
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are the two related bypass maps. When n # 0, these two bypass maps have different grading
shifting behavior, so by Lemma [2.23] different choice of non-zero coefficients does not change the
dimensions of kernel and cokernel of the map. Hence we conclude that for n # 0,

However, when n = 0, the two bypass maps z/;‘i‘)n71 are both grading preserving, so the coefficients
matters, i.e., I[*(—S3(K), 1) and I*(—S3(K)) might have different dimensions. Indeed, it is observed
by Baldwin-Sivek [BS21] that for what they called as W-shaped knots (which is clearly a non-empty

class, e.g. the figure-8 knot [BS224, Proposition 10.4]), these two framed instanton homologies have
dimensions differed by 2.

5. SOME EXACTNESS BY DIAGRAM CHASING

5.1. At the direct summand. In this subsection, we prove Proposition [34] by diagram chasing.
For convenience, we restate it as follows.

Proposition 5.1. Given n € Z, ko € N, suppose cg € C\{0} is the scalar such that the following

equation holds

n+ko n _ n+ko n
(5.1) U oke OV ke = 0V ok © VY ngo

Then for any c1,ca, c3, cq satisfying the equation
C1€3 = —C2C4Cp,
the following sequence is exvact

n n n+k n+k
r, (F% kg @2V i) Lok @ik ¥ b g
Proof. For simplicity, we only prove the proposition for n = 0. The proof for any general n is
similar (replacing all T, below by I, 1., and modifying the notations for bypass maps). Also, we
adapt conventions in Section and suppose

Fn+2k0

Co=Cl=Cg=C3=1,C4=—1.

The proof for general scalars can be obtained similarly.

We prove the proposition by induction on ky. We will use the exactness in Lemma and the
commutative diagrams in Lemma and Lemma 2.TT] for many times. For simplicity, we will use
them without mentioning the lemmas.

First we assume ky = 1. The proposition reduces to

ker(l 5 = 2) = Im((¥ 1,47 1))-
The assumption (&) implies

ker(‘/’£,2 - Wlf,z) > Im((¢9r,1a 7/19,1))-
Then we prove
ker(y! 5 — i) < Im((¢1 1,97 4)).
Suppose
(x1,22) € ker(YL 5 — 9] 5),ice, YL H(21) =P} o(22) = 0.
Then we have

Oy (@) =93 0wl 5(m1) =%, 0¥ o(x2) = 0.
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By exactness, there exists y € I'g so that 1#3,1(3/) = x1. Then
w}r,z © wg,l(y) = ¢£,2 © ¢9r,1(y) = 1/11772(;101) and ¢}+,2($2 - ¢9,1(y)) =0.

By exactness, there exists z € I', so that
U a(2) = 22 =92 4 (y).
Let y' = y + ¢4 ((2). Then
1#2,1(9/) = ¢2,1(y) =1
and
‘/’0—,1(9/) = g,l(y) + 7/1(1,1 O‘/’i,o(z) = 1/19,1(34) + 1/;‘;71(2) = T2,
which concludes the proof for ky = 1.

Suppose the proposition holds for ky = k. We prove it also holds for ky = k + 1. The proof is
similar to the case for kg = 1. Again by assumption (G.I]), we have

ker(\I/]iJ,r21k+2 - \Ijif21k+2) - Im((‘l’g,kﬂ’ \I/O—x’f“))'

Then we prove

ker(UM, o — W ) c (WG 4y, W2 40)).

Suppose
k k . k k
(x1,22) € ]aielr(\117”7L21kJr2 — \II+T21k+2), i.e., \Iszlkﬂ(xl) — \Il+f2lk+2(x2) =0.
Then we have

k k k k k
++ul (z1) = ﬁf °© ‘I’jzlmz(xl) = wif °© ‘I’+T21k+2(x2) =0.

By exactness, there exists y; € I'y, so that wi,k-&—l (y1) = x1. By a similar reason, there exists ys € T,
so that ¢§1k+1(y2) = x9. The goal is to prove
k k
‘I’—,zk(yi) = ‘I’+,2k(y§)

for some modifications y] and y5 of y; and ya as for ¢’ in the case of kg = 1. Then the induction
hypothesis will imply that there exists w € I'y so that

‘I’i,k(w) = y/l and Wg,k(w) = yé
Hence we will have
\Ij?thrl(w) = %/th,kﬂ(y/l) =27 and \Ilg,kJrl(w) = ¢E,k+1(y/2) = T2.

This will conclude the proof for kg = k + 1.
Now we start to construct y. We have

wi]f;rlirZ(‘I]iTzlkH(x?) - \I]]i,2k+1(y1)) = wi]fszﬂz(‘l’ilekﬂ(@) - \111172“1(3;1))
= \1/1151“2(1;2) - ¢i]f;kl+2 © ‘Iﬂi,%-ﬁ-l(yl)
= ‘I’]jzlkw(;vl) - ‘I’]jzlkﬂ(xl)
=0.
By exactness, there exists z; € I';, so that
7/}'172;@.,.1(21) = ‘I/Ii-r—glk.;.l(xZ) - ‘P]i,2k+1(yl)-
Let y; = y1 + ¢ ;.(21). Then

wi,k-ﬁ-l(yi) = l/fi,lﬁtl(yl) =T
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and
k k k
\ij,2k+1(y,1) =UT i (yn) + U0 5 g0 ¢i,k(zl)

k

=T o1 (y1) + ¢i,2k+1(zl)
k+1

= \I/+T2k+1(x2)7

Then we start to construct y5. We have

7/’%2“1(‘1’]3,21@(3/1) - ‘I’Ii,zk(?ﬁ)) = \I/]i,QkJrl(y/l) - 7/’%21”1 © \Iji,2k(y2)
k
= ‘I’]i,2k+1(yi) - \I/—T2lk+1($2)
=0.
By exactness, there exists z3 € ', so that
m k / k
1/)_)2,6(,22) = ‘Ilf,2k(y1) - ‘I/+,2k(312)-
Let y5 = y2 + 9" | (22). Then

1bﬁlﬁLl(?Jé) = 2/’E,kJrl(?D) = T2
and k / k k
\IJ+,2k(yz) = ‘I’+,2k(y2) + \IJ+,2k © wﬁk(@)

= ‘I’]i,zk(m) + wﬁ,%(@)

= \I/Ii,Qk (yll)a
Then we have the following commutative diagrams

Tl € I‘k+1
/
y/l € I‘k
/ \
Ty Loy Logqo
\ /
o ’ | Y]
yh € Ty, /

22 € Tpqa
By the induction hypothesis, there exists w € I'y so that
\Ij?f-,k(w) = y; and \Ijg,k(w) = Ys,
which concludes the proof for kg = k + 1.

33
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Remark 5.2. By similar arguments, we can prove the following sequence is exact for any ki, ko € N,

n+kq
(CI‘I’+ n+k17C2\Ij7 n+k2) cs‘l’,,n+k1+k2 +C4\P+ n+k1+k2

Fn I"n+l€1 @ I‘n+k2
where the scalars are determined by cijc3 = —cacqco and ¢g comes from the following equation

n+ko n n+kq n
\I/+ n+ki+ko © wr ntks =coV” tkotke © \I}+,n+k1'

Fn+k1 +kas

5.2. The second exact triangle. In this subsection, we prove Proposition by diagram chas-
ing. For convenience, we restate it as follows, which is a little stronger than the previous version.
Applying the proposition to the dual knot of I, 1 with framing —u and setting n = —1 will recover
Proposition

Proposition 5.3. Suppose
l/ _ iﬁn 1 ¢n+1 _ 001/}&)"71 o 1/}2-}-#1
for some cg € C\{0}. Then for any c1,ca, cs,cq € C\{0}, the following sequence is exact

1 1
eV it AT 4 (cryp™ 7 et 7 0)

Fn @I‘n Fn+1 i I‘nfl _— Fn @ Fn

Proof. We adapt the conventions in Section 23] We will use Lemma 2.6] Lemma 2.11] and Lemma
2.12] without mentioning them. We prove the exactness at I',,_; first. We have

—1 1
g,nol 2/’Jrn 1“/’"Jr

Hence
ker((clz/ﬂ)_nl, 027,/11)_"1)) > Im(l).
Then we prove
ker((clwfjnl, czwijnl)) < Im(").
Suppose
x € ker((cryp" ), cott 7)) = ker(¥" 1) A ker(¢)).
By exactness, there exists y € T'y, so that ¢/}’ |, (y) = 2. Then we have

W a(y) = 05 0wl Ly (y) = 97 (2) = 0.
By exactness, there exists z € I';, ;1 so that 1/1"“( ) = y. Thus, we have I'(z) = x, which concludes
the proof for the exactness at I';,_1.
Then we prove the exactness at I';,, 1. Similarly by exactness, we have
ker(l') > Im(esyp” 4y + €a¥l pyr) = Im(P” 1) +Im(PF 1)
Suppose x € ker(l’). If ¢"+1( ) = 0, then by the exactness, we know x € Im (% ,,, ). If wnH( ) #
0, then by the exactness, there exists y € I';, so that

U uy) = P (@)
Then we know
T =" (y) € ker(@iD) = Im(47 ).
Thus, we have

T e Im(wﬁ,nJrl) + Im(wi,nJrl)a
which concludes the proof for the exactness at I, 1. ]
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6. SOME TECHNICAL CONSTRUCTIONS

6.1. Filtrations. In this subsection, we study some filtrations on Y and I';, that will be important
in latter sections. We still adapt conventions in Section

Lemma 6.1. The maps G,, in Lemmal[214 lead to a filtration on Y : for large enough integer ng,
0O=kerG_,, c---ckerG, ckerGpi1 < ---ckerG,, =Y.

Proof. Tt follows from Lemma that when ng is large enough we have
0=kerG_,, and kerG,, =Y.
It follows from Lemma that for any n € Z,
ker G, < ker G, 41.

Lemma 6.2. For any n € Z, the map G,, induces an isomorphism

>~

Gy : (ker G111/ ker Gn> — kery! | nkery” L.

Proof. Suppose x € ker G,, 1. Then from Lemma 2.18 we know that

¢$,n+l o0Gn(r) = Gpyi(x) = 0.
Hence we have
Gn(ker Gpi1)) © ker g | nkery™ | L.

Clearly G, is injective on ker G, 11/ ker Gy, so it suffices to show that the image is kery! , 1 N
kery™ ;. To do this, for any element z € ker¢} , | nkery™ |, we know from Lemma
that

z € kerH, =ImG,.

As a result, there exists a € Y so that

x = Gp(a).
Again from Lemma [2.18 we know that
Gri1(a) =91l o Gula) = ¢t (z) = 0.
This implies that o € ker G, 41. O

Lemma 6.3. For any n € Z, the maps @[J%n induce isomorphisms

2 1) =
(i (Imwﬁ; /Im@/ﬁfu) = kery! . nkeryp”

(R <1m P2/ Im @wj}) = ker ¢,y nkerg”
Proof. We only prove the lemma for positive bypasses. The proof for the negative bypasses is the

similar. Let u € Im wijf. By Lemma and Lemma 2.12] we have

wi,nﬂ © win(“) =0 and wﬁ,n-&-l © win(“) = wi,n-ﬁ-l(u) = 0.
Hence we know
E o (Im g2y cker o,y nker g™ .
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Since ker¥ , = Im @bifl}, the map ¢ , is injective on Im @[Jiff /Im wﬁ:}. To show it is surjective
as well, pick = € ker ¢}, ,; nkery” , ;. Note z € ker¢} ., = Ime)¥ , implies that there exists
u €T, so that ¢ | (u) = z. Lemma 212 then implies that

dji,n-ﬁ-l(u) = 1bﬁ,n+1 © d]in(u) = @/’Z,n-ﬂ(m) =0.
As aresult, u € kergp¥ | | =TIm z/;i‘f. O

Corollary 6.4. (1) For any n € Z, there is a canonical isomorphism
(kean+1/kean) ~ (In1¢i§f/hn¢ﬁj}> ~ <1n1¢ﬁjf/hn¢£j}).
(2) For large enough ny, there exists a (noncanonical) isomorphism

v (o moze) > (o, oy )

12
12

Definition 6.5. For any coprime 7, s € Z and any grading i, define the map F} as the restriction
E! = F,|(Ty,i).
where F), is the map from Lemma 2.16

Lemma 6.6. Suppose ng € Z is small enough so that F,, = 0 (c.f. Lemmal[ZI9). Then for any
integer n = ng and any grading i, we have

. i (n—1)p—q
Yy (ker Fj) = Im (Proju o 1/;1‘3#),
where
j—(n=Dp—q . —1)p —
Proj, * T, — (Tu,i— (n=Up=q 2)p q)

1s the projection.
Proof. We only prove the lemma for positive bypasses and the proof for negative bypasses is similar.

First, suppose

. (n—1)p—gq

u € Im <Pr0jL

o¢im) zlnnﬂgﬂm(F#JA—gl:%¥1:2)
Pick z € (T, — LGo)p) so that
() = u.
Take y = ¥, (), we know from Lemma that y € (T'y,%), from Lemma [ZT8 that F,(y) =
Fy(x) = 0, and from Lemma T2 that ¢ ,(y) = u. As a result, we conclude u € ¥, (ker F}\).
Second, suppose u € 7 |, (ker F?) is nonzero. Pick z1 € ker F! so that

@/127“(1'1) = u.

By Lemma 2.3, Lemma [Z6] the fact that ¢}  (z1) = u # 0 implies that
p-1_. (-Up-q_  p-1

—9- <i— <g+
2 ' 2 97
Pick a large enough integer k£ and then take
Ty =" p(r1) and 23 = ‘I’Tzimzcm (w2).
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By Lemma 2.18 we have

Foptok—no(23) = Foyr(2) = Fu(z1) = 0.
Note that the grading j of x3 equals to

k k— -
joip ke ik onop (0 nolp
2 2 2
Hence
g (2n+2k—;o)p—q—1 <i<-g+ (2n+2k—;o)p—q—1

since k is large. From Lemma [2.19] and the assumption on ¢ we know that Fb,425_n, is injective on
the grading j. Hence x5 = 0. Then the following Lemma [6.7] applies to (z,y) = (x2,0) and there
exists x4 € 'y, so that

\Ifi(?n+k($4) = X2.
Thus by Lemma [Z.12]

. (n—1)p—q

u = 1/117#(331) = 1/)1"’1“(3:2) = 1/)1?#(:174) € Im <Pr0jL 2 o 1/)10#)

Lemma 6.7. Suppose n € Z and k1,ks € Ny. Suppose x € T'pyp,,y € Tngr, such that
+k +k
Uk ks (2) = O 1k, (9)
Then there exists z € I',, so that

U2 ik, (2) =@ and WY (2) = o
Proof. This is a restatement of Remark The proof is similar to that of Proposition B.11 O
6.2. Tau invariants in a general 3-manifold.

Definition 6.8. For any integer n and grading i, we say an element in Im F (c.f. Definition [6.5) a
homogeneous element. For a homogeneous element o € Y, we pick a large enough ny and define

T+(CY) = m,ax{i | Jre (I‘novi)7 F"O(x) = a} - w
7'7(04) = Iniin{i | dre (I‘novi)v F"O(‘T) = 04} t W

7 (a) = 7" (a) + ¢  min—max
p p

Remark 6.9. Here we fix the knot K < Y and define the tau invariants for a homogeneous element

a € I*(Y). The reason why we go in this order is because (1) currently the definition of homogeneous

elements depends on the choice of the knot and (2) in this paper we only focus on the Dehn surgeries
of a fixed knot.

(o) :i=1+ + no.

Remark 6.10. The normalization i("o_i;)p_q comes from the grading shifts of ¥}, in Lemma

When K is a knot inside Y = S, we have that 7% (a) equal to the tau invariant 77(K) defined in
[GLW19], where o is the unique generator of I*(—S®) = C up to a scalar. Then 7(a) = 1 —277(K).

Lemma 6.11. We have the following properties.
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(1) Suppose ni,ns2 are two integers and i1,i2 are two gradings so that there exist 1 € (Tp,, 1)
and x9 € (T, ,i2) with
Fnl (Il) = Fn2 ({EQ) # 0.
Then there exists an integer N so that

(n2 2711)]9 + Np
i.e. when we send x1 and x2 into the same L'y, with n3 > ni,ny by bypass maps, then the
difference of the expected gradings of the images is divisible by p (the grading shifts of the
bypass maps Y .1 are ¥p/2).

(2) Suppose we have an integer ny, a grading i1, and an element 1 € (Tp,,i1). Then for any
integer no = ny and grading is so that there exists and integer N € [0,n9 — n1] with

1o =11 —

(12 —2711)1? N,

there exists an element xo € (Tp,,i2) so that

F’ﬂ1 (‘Tl) = Fn2 (1'2)

(3) Suppose n € Z and for 1 < j <1 we have a grading i; and an element x; € (I'y,4;) so that
F.(x1),..., Fu(x;) are linearly independent. Then the element

l
> Fux:)

=1

1o =11 —

«

J
18 homogeneous if and only if for any 1 < j <1, we have

iy = i1 (mod p)

Proof. (1). Take ng a large enough integer. For j = 1,2, take i; € (—§, §] to be the unique grading
so that there exists an integer IN; with

nog — Ny
Z;:’LJ*M+NJP

Take

r nj+Nj n; )
gy =V oWl N, (xj).

From Lemma we know that
Tj € (I‘novzg) and Fno(xll) = Fnl(xl) = Fnz(‘T?) = Fn0($l2)

By Lemma [ZT9] we know that z{ = x5 and in particular, i{ = #,. As a result, we can take
N = Nj; — Ns then it is straightforward to verify that

(n2 - nl)p

Np.
5 AP

iy = i1 —
(2). We can take
To = \111”7;'2]\7 o \IJZ{MJFN(:El)
Then it follows from Lemma that z € (T'y,,i2) and follows from Lemma that
Fo,(22) = Fp, (21).
(3). The proof is similar to that of (1). O

Lemma 6.12. For a homogeneous element o, we have the following.
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(1) 7% (a) and hence T(a) are well-defined. (i.e. they are independent of the choice of the large
integer ng.)
(2) We have 7(a) € Z.
(8) For any integer n and grading i, the following two statements are equivalent.
(a) There ezists x € (T'p, 1) so that Fy(z) = a.
(b) We have n = 7(«) and there exists N € Z so that N € [0,n — 7(a)]

T (@) +7 () = (n—T(x))p
= 5 + Np.
(4) We have
() = _p%l —gand 77 (a) < p%l +g.

Proof. (1). Suppose « is a homogeneous element. Then by definition there exists « € (T, 1) for
some integer n and grading ¢ so that

F,(x) = a.
Then for large enough ng, we can take
y =Y, (2)
and from Lemma 218 implies that
Fr, (y) =«

and hence 7% (o) exists.

To show the value of 7 () is independent of ng as long as it is large enough, a combination of
Lemma and Lemma implies that the map

n . . P
w—?ng-&—l : (I‘novl) - (I‘n0+172 + 5)

is an isomorphism for any 7 > g — %‘H. Then Lemma 218 implies that 7 is well-defined. The
argument for 77 is similar.

(2). Tt follows directly from Lemma BTl part (1). (3). We first prove that (b) implies (a). First,
suppose n € Z is large enough and

—1
vy € (D, 75(0) = B2 UPHY
so that F,(z+) = . Let
I,i = ‘1117271—7((1) (Ii)

It follows from Lemma that
H(a) + 77 (@)

2 )

le_r € (I‘anf(a)a
From Lemma 2.18 we know that

Fan‘r(a) (I/-}-) == F2n77(o¢) (.I/_)
By Lemma this implies that

o =al.
Hence Lemma [6.7] applies and there exists z € I'(,) so that

\I/T—F(i)(z) =T4.
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Again Lemma implies that z is in the grading

(o) + 77 («
e (O T ),
and and Lemma implies
F.,.(a) (Z) = Q.

Then Lemma [6:1T] part (2) implies that (b) = (a).
To show that (a) implies (b). Suppose there exists x € (I'y,4) so that F,(z) = a. From the

above argument, we already known that there exists

(@) + 77 ()

ZE (Fr(a)u 2

)

so that
F‘r(a) (Z) =
Hence Lemma [6.1T] part (1) applies and we know that there exists N € Z so that

@)+ (@) — (n— 7(a))p

Np.
2 AP
If N >n —7(a), we can take a large enough ng and
=" (x).
It follows from Lemma [2.6] that
1 —
2’ € (T, i) with i’ > 7% (a) + w

Then Lemma 2.I8 implies that
Fo, (7)) =«
which contradicts to the definition of 7% in Definition Similarly if N < 0 we can take
= v, (x)
which would be an element contradicting the definition of 7. When n < 7(«) we have n—7(a) < 0
so there is always a contradiction.

(4). Tt follows from the definition of 7+ and Lemma [ZI9 that F,, is an isomorphism when
restricted to the direct sum of p consecutive middle gradings of I';, when n is large. O
Lemma 6.13. For any n € Z we have that

Im F,, = Span{a € Y | a homogeneous and 7(a) < n}

Proof. Suppose « € Im F),. Let

a = Z a; where a; € Im F, is homogeneous.

K2

From Lemma [6.12] we know that 7(c;) < n for all i. On the other hand, suppose

a= Zai where 7(a;) < n for all 4.

K3

By Lemma [6.12 part (3) we can pick z; € T'7(4,) so that
Fran(2i) = a.
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Then from Lemma 2,18 we know
o =F,(O w5 (),

O

6.3. A basis for framed instanton homology. We pick a set of basis B for Y as follows. First

B = uU B,.

nez

To construct the set 9B, first let B,, = ¢ if F;, = 0. By Lemma this means B,, = ¢ for all
small enough n. Write

%<n= U %k

= k<n

We pick the set B,, inductively. Note we have taken 9B, = ¢ for n with F,, = 0. Suppose we have
already constructed the set B, 1 that consists of homogeneous elements and is a basis of Im F},_1,
we pick the set B,, so that B,, consists of homogeneous elements with 7 = n, and the set

%Sn = %<n71 U %n
forms a basis of Im F;,. Note Lemma [6.13] implies that B,, exists and

[B,,| = dim¢ (Ian/Ian_l)

For any n,k € Z so that k < n — 2, define maps
ng,k . %n i Fk
as follows: for any « € 98,,  Im F,,, since « is homogeneous and 7(«) = n, we can pick

7T (a) + 77 (@)
2
by Lemma [6.12 part (3) so that F,(z) = a. Then define

ﬁl,k(a) = ¢i,k © Wil,#(z)

z € (Ty, )

Lemma 6.14. Suppose n,k € Z so that k <n — 2.

(1) The maps N4 k. are all well-defined.

(2) We have 0"l ,,_o = cn 0" ,_o. for some scalar ¢, € C\{0}.
(8) Elements in Im Ny < Iy are linearly independent.

(4) Im N4 n_o forms a basis for ker wi_n{l N ker 1/)111_”271.

(5) For any a € B, we have

() -;— 7 () - (n— 22— k)p)

nl,k(a) € (I‘kv
(6) We have

k—1 n n k—1 n
Yk Nt -1 = N4 and Py ont g = 0.
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T00]. . e only work with 7 and the arguments for n” , are similar. Suppose there are
P 1). W 1 k with iJc d th f "JC imil S h
z1,22 € (I',,7) so that F},(z1) = F,, (22 =awerei=M.Then
;22 € (D', 4) so that F(z1) = Fu(z2) = a, wh —
z1 — 29 € ker Ffl
and by Lemma we have
Y (21— 22) € Pl (ker F')c Imy?, Imwi‘ful.

Here ng € Z is a small enough integer. As a result,
ni,k(a) = dji,k © '@/Ji,u(zl) = '@/Ji,k © dji,u('Z?)
is well-defined.
(2). It follows directly from Lemma 211l Note that in Section we do not fix the scalars of
the second commutative diagram of Lemma 2111
(3). We only work with n't i and the arguments for n™ , are similar. Suppose

B, ={a1,...,q;}, where l = |8, | = dimc (Ian/Ian_l).

Suppose there exists A1, ..., \; so that
l
Z Aj - ni,k(aj) =0.
j=1
Pick T () +7" () hat F _ h
ick z; € (T, —=5—=%) so that Fy,(zj) = cy, we have
l
LA ﬁ,u( > )\jzj) =0.
j=1
As a result, there exists z € I';,,_1 so that
l
k n
(@) =97, ( > )\jzj),
j=1
Note from Lemma [2.12] we know
l
Vo W) = o) = vt (D e )
j=1
so as a result there exists y € T';,_1 so that
l
D Az = U (@) + 9l ().
j=1
Hence by Lemma [2.18 we have
l l
DNy = Fu()) Az))
j=1 j=1

= F, 0 UEL(z) + F, o9 1 (y)
= Fp(z) + Fu1(y)
cImF, ;.
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Since «; form a basis of ‘B,,, the sum cannot be in Im F;,_; except A; = 0 for all <.

(4). For o € B, pick z € (T, M) so that F),(z) = a. Then by definition

771,71—2(0‘) = wi,n—2 o dji”u(z)
Now we can compute
-2 -2
wi,nfl o ni,n72(o‘) = 1/’1,7171 © wi,n72 ° wi”u(z) = 05
and by Lemma [2.17]

E,7712—1 © ni,n—2(a) = Ejvzz—l © wi,n—? © @[117“(2) = wi,n—l © wi,u(z) =0.

Hence
Nt n—o(c) € ker dji;?—l N ker djz;?—l'
Then (4) follows from (3), Lemma [6.2] and Im F,, = ker G,,_1.

. It follows direct rom the construction o an emma [2.0
5). It foll di ly fi hi i fn;k dL

(6). It follows from the construction of n}} ;, the commutativity in Lemma[2.12/and the exactness
in Lemma O

Convention. We can define
~Nn n ot 11 n
Ny =Ny, and 77, =cp-nl
so that
~n ~n
77+,n—2 = 77—,71—2

and the new maps satisfy all properties in Lemma [6.14] except (2). We will use 5"} ; to denote 7"} ,
in latter sections.

7. THE MAP IN THE THIRD EXACT TRIANGLE

In this section, we construct the map ! in Proposition B9 and Proposition B.12] show it satisfies
the exactness and the commutative diagram. We still adapt conventions in Section We restate
the propositions as follows and no longer use the notations [, !’ for maps.

Proposition 7.1. Suppose n € Z is fived and k € Z 1is large enough. Then There is an exact
triangle

Dk
Fn Fn+k @ Fn+k
‘bk ‘/Zigk
Fn+2k-

where two of the maps are already constructed
etk = ( Y otk in-}—k) i R RECC) A

n+k ._ qn+k _ qyntk .
Cor = Vo — Vi o Paik @ Do = Py

Proposition 7.2. Suppose n € Z is fired and k € 7 is large enough. Suppose @Zt%k_l is constructed

in Proposition [71} Then there are two commutative diagrams up to scalars.
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2n+42k+1 2n+2k

n+k+1 n+k+1 2
Yiu O nfki1 VI Oy et
Tontorts FH Tontorts FH
P 2
2n+2k+1 2n+2k+1
ntk+l T w ntk+1 = w
PR R N +.n U ok 1%V ikt Yn
n+2k n+2k
Q'Vl Q'Vl
Fn+2k Fn Fn+2k Fn

7.1. Characterizations of the kernel and the image. Before constructing ®"*2* we charac-

ntk  These results will motivate the construction of ®?+2* to

terize the spaces ker 7, and Im @75, .

make
Im @1 % = ker @7, and ker ®7"2% = Im @715, .
Since @7, and (I)ZISk are constructed by bypass maps, it suffices to consider their restrictions
on each grading.

Lemma 7.3. Suppose n € Z is fived and k € Z is large enough. Let
Proj’, : Ty — (T, )

be the projection. Then we have
ker @ . N (Ty,i) = Im <Projfz o Gn>.

Proof. We will need to apply Lemma 2200 Following conventions in Section 23] we have
(7.1) Hp =94 00 — " 41

Suppose = € Im (Projfl o Gn) Pick a« € Y and y € T, so that

G (a) = z + y and no homogeneous part of y is in grading .
When £k is large enough we know from Lemma that
Gnir =0.
In particular, from Lemma 218
VL k(@) + 0% 0 (y) = Gugr(a) = 0.

Since ¥ |, |, are homogeneous, we know that

Y (@) =0

n

which implies that x € ker @, n (T'p, ).
Next, suppose z € ker &7~ (T, 7). We take 2}, = 2 and we will pick 27, € (T, j) for all j # i
so that
Z:z:fl ekerH, = ImG@G,.
J
We will use the notation z° to denote an element in (T',,b). Recall that from Lemma B8, the
grading shifts of ¢} ,, | are F5. Take

i+ (kle)p " i+ (k+21)p
Tpyk=1 = \IJ—,n-Hc—l(x) and Toyk-—1 = 0.
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Since z € ker @, n (T',,,4) we know that

(k (k+1)p
+k—1t+ _ k-1, it 5
wn,n-ﬁ-k ( n+k 1 ) =0= wi n+k ( n+k—21

Hence from Lemma [6.7 there exists

k
I:H{ 5 € Thyr—2,i+ k2p)
so that (kt1) (e D)
P :;13 ) =0, =0and wﬁfn’“jﬁl(wﬁﬁ D=t
Then we can take i) (h-2)
. P i —=)p
$Z:;jg_-==0 and wﬁikié =V o ia(@).

We can apply the same argument and use Lemma to find

it (k+23)p z+ (k+1)p 1+ (k— l)p i+ (k;?’)p

‘,En+k73 ’ n+k 3 ’ n+k 3 7xn+k73 EI‘"+k_3

so that 1/)12’“;]6372 send them to corresponding elements in I',,;;_2. Repeating this argument, we

can obtain elements
xitPI e (T,,i + pj) for j e [k, k] nZ
so that @}, = @, ¥" , 1 (@5P*) = 0, ¥, (zPF) = 0, and for any j € [k, k — 1] 1 Z we have

O i @) = 0 (PO,

Hence it is straightforward to check that

k

Z P e ker(¥Y 11 — ¥ 1) = ker Hy = Im G,
p—

Lemma 7.4. Suppose a € Y is a homogeneous element and

l
Oé=2)\j'04j
izl

where A; # 0 and a;; € B for 1 < j <. Let n be an integer, i be a grading and k be a large enough
integer. For an element x € (I‘n+2k, i) so that F, o (z) = a, the following is true.

(1) We have
77 () = min {77 (a;)} and 77 () = max {7~ ()}

1<j<l 1<j<l
(2) We have x € Im (I)Zigk if and only if for any 1 < j < I, at least one of the following
inequalities holds
—1)p— 1
7;27‘7((1]‘)—7(” 2)p 1 andiéTJr(aj)—l—i( 2)p 1,
(3) If v ¢ Im@Zng then there exists j,N € Z so that 1 < j <[, 0 < N < 7(oj) —n —2, and
“1)p —
i=71"(ay) + (n=lp—q + (N + 1)p.

2
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Proof. (1). We only prove the result for 7+ and the argument for 7~ is similar. We make the
following two claims first.
Claim 1. For any homogeneous element (not necessarily elements in B) a; and s so that
a1 + a9 is also homogeneous, if 71 (c1) > 71 (a2) then 77 (a1 + a2) = 71 (ag).
To prove Claim 1, let n be large enough. From Lemma [6.11] part (3) we know that
(1) =71 () = 77 (a1 + a2) (mod p).

Assuming 71 (a1 + a2) > 71 (ag). Let

7 =min{r" (1), 7" (a1 + a2)} > 71 ().
From Lemma part (3) and (4) we then know that there exist
(n=1p—g,

$1,$3€(Fn,T++ 5

so that
Fo(x1) = aq and F,(23) = a1 + aa.
As a result,
F, (x5 —x1) = a9

which contradicts the definition of 77 (az).
Claim 2. Suppose aq,...,a, € B are pair-wise distinct elements in 8 so that

T () =7 (o) = =7 () =77

Suppose

u
,— s .
o —Z)\] Q;
i=1

and suppose it is homogeneous. Then 77 (a/) = 7.

To prove Claim 2, assume that 7+ (a) > 7. Without loss of generality, assume that A; # 0 and
7 (1) = min {77 ()}
Then a similar argument as in the proof of Claim 1 implies that
T () <77 ().

Note we assumed that 71 (a) > 7t = 77 (ay). Hence by Definition 6.8, 7(o) < 7(a1), which
contradicts the construction of the set 8.
Now we prove part (1). Suppose aq,...,q; € B are pair-wise distinct elements in B. Let

l
o = Z)\j-aj.
j=1

We want to show that

™ (a) = gjigl{T*(aj)}-

To do this, relabel the elements «; if necessary so that

T (ar) = 7 (a2) = - = THew) < T (Qus1) < 7 (Qure) < - < 7 ().
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Since « is homogeneous, from Lemma [6.17] part (3), we know that the sum

v
DNa
j=1

is also homogeneous for any v = 1,...,l. Applying Claim 2, we conclude that

() <

Hence we can apply Claim 1 repeatedly to conclude that

*(ilxj-aj) — (ar) = min {7 (ay)).

1<y«

(2). f x € Im @Zigk, then there exists y € (Tpyk,i — %p) and z € (Dpig,i + k—zp) so that

T = ‘I/_+n+2k( ) + \Ij+ n+2k( )

By assumption

l
Fn+2k = Z

with \; # 0 and o homogeneous. By Lemma 218 we have
a=Fui,(y+ 2).

Since B forms a basis for Y, we can write

Finly Z X; -y and Fpyyp(2 Z N - ay,

gj=1
where L = |B[. Then for any 1 < j <, at least one of A and M} is nonzero. Since both [}, (y)
and F, (%) are homogeneous, from part (1) we know

.k _ n+k—1)p—
2771)27' (aj)—%when/\;;ﬁo
k +k—1)p—
and ¢ + 7]? <7 (ay) + w when A} # 0.
Conversely, suppose for any 1 < j <[ at least one of the following inequalities holds
—1)p — —1)p —
iz7 () — 7(71 2)]9 9 ond i <7 (aj) + 7(71 2)]9 q
We show z € Im @Zigk If 3| = W g, then from Corollary 2.9 clearly either \IJ+ ok OF
\If"tfﬂk is surjective onto (T'y 12, 7) and then z € Im @Zigk

Then we assume [i| < "p—ql g. By Lemma [ZT9] the map F,,; ok is injective when restricted

to (T'y42k,%). From the deﬁnltlon of 7t in[6.8 for any j such that

—1)p—
i (ay) - B UP=a
2
we can then pick y; € (Tpyx, i — 7”) so that

Frik(yj) = Aj -
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and let y be the sum of all such y;. Similarly, for any other j with 1 < j <[, we have

—1)p—
i <7 (ay) + 7(71 2)p q
we can take z; € (Tpik, i + %p) so that
Foik(z)) = X - a
and let z be the sum of all such z;. Then from Lemma [2.1§ it is straightforward to check that
Fn+2k(‘l’ﬁfnk+2k(y) + ‘I’zfnkuk(z)) = a = Fyo(x).
Since we have assumed that Fj, ok is injective, we conclude that

k k k
x = ‘I’T,rnwk(y) + ‘I’anwk(z) em®; 77, .

(3). If & ¢ Im®" 1% | then part (2) means that there exists some j so that

n+2k>
(o) + (n—12)p—q <i<r(ag) (n—12)p—q_
Note by Lemma [6.11] part (3), we must have
i=71 (o) — (=lp—q 12)]9 —9_ 1 (aj) + (n=p=g 12)]9 —4 (mod p).

By direct calculation, we have

()~ TR (o) + PTDET)  (r(ag)

Then we can choose N with 0 < N < 7(a;) —n — 2 as desired. O

7.2. The construction of the map. Since @}, and @Zigk are homogeneous, we can construct
®n+2k on each grading to achieve the exactness and the commutativity. From the grading shifts in
Lemma and Lemma T3] the map ®7*2* should be grading preserving. from Lemma 235, for
any grading ¢ with
Inp—q| —1
2 )

we have (I';,,i) = 0. From Corollary 2.9 we know either \I!’Jifnkuk or \I!’jfnkuk is surjective onto
(Ty42k,1) for such grading i. Thus, on such grading 4, the zero map satisfies the exactness for
@7 +2k (though we still have to verify the commutativity in Proposition [7.2)).

On the other hand , from Lemma 219, the restriction of F}, ;2 on consecutive p middle gradings
is an isomorphism. In particular, when p = 1, it is an isomorphism when restricted to each middle

grading. Also from Lemma [73] it seems that the definition of @Ziik on (T, 42k,7) should involve

li| > g+

Proj; o G,. However, if we only take
Pl”Oj:-I oGy o Fpiok

as the definition, current techniques are not enough to show the exactness and the commutativity.
We resolve this issue by introducing an isomorphism

I:'YSY
and define
(7.2) @7 +2F (1) = Proj’, 0 Gy o I o Fyyop(x) for 2 € (Tyiok, ).
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The construction of I is noncanonical but it helps us to prove the exactness and commutativity.

Remark 7.5. In the first arXiv version of this paper, we deal with the special case Y = S3. In
this case Y =~ C so up to a scalar we have I = Id. In this special case indeed we could prove the
exactness and commutativity without explicitly write down the isomorphism I as follows.

We first define the map I on the basis

of Y chosen in Section that consists of homogeneous elements and then extend the map on the
whole space linearly. We will show it is an isomorphism.
Fix ng € Z small enough so that Corollary and Lemma 2.19 apply. For any «a € B, there

exists a grading i(a) € (—§, £] so that there exists N(a) € Z with

) )+ 7 () (t(@) —2—mng)p
i(a) = 5 - 5 + N(a)p.

By LemmalG. T4 part (2) and (6) (and the convention after the lemma), we know that for any a € 9B,
no+N () () _7(a) _7(@) 1 7(@)—2—N(«a) ()

‘I’—?T(a)—z (77+,n0+N(a) (0‘)> = 77+,T(a)—2(o‘) = ”—,T(a)—z(o‘) =V ()2 <77—,T(a)—2—1v(a)(a))-

Then by Lemma [6.7] there exists w € (T'y,,,4()) so that

n _ ,7(@) n _ (@)
(7:3) U N () (W) = My v (@) a0 U0y o oy (W) =10y 5 (e (@):

)

Let

Proj:Tp, > @ (Tuo,d).

ie(-4.3

From Lemma 2,179, we know

ProjoGp,: Y > @ (Tn,,1)
]

ie(—

[NS]
(NS

is an isomorphism. Hence we define

I(a) = (Projo Gp, )t (w).
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The following diagram might be helpful for understanding the construction of I. (We write
n=r71(a), ny = 7(a) —2 — N(a), and na = ng + N(a).)

nﬁ,nl (Oé) € Fnl

A
p"o .'
—n]
wely,, zel'y,
no
‘Il+,”7'2
Gy F,
n
77+7n2 (Oé) c ]__‘n2 e e I‘,U.
I
I(a)eY aeY

Remark 7.6. For a general 3-manifold Y, our construction of I is noncanonical since there are many
choices such as the basis 9 and the element w for each a € 8. However, one could still ask whether
we could simply pick I = Id or not. If we take I = Id, then Proposition [Z.2] can finally be reduced
to Conjecture [[7] which we state below. We believe that the following conjecture is true, though
currently we do not find a proof for it. Hence in order to fulfill the main purpose of the paper, we
introduce the isomorphism I to bypass this conjecture.

Conjecture 7.7. For any a € 9B, and any integer n < 7(a) — 2, we have
025 (@) = Projit o Gu(a),

where

and _
Projgli Ty — (anji)
is the projection.

Lemma 7.8. We have the following.

(1) Suppose a € B and ng, w, N(«a) are chosen as above. Suppose n,k are two integers so
that no < k < n. Then (a) W% o U (w) # 0 if and only if (b) k < no + N(a) and
n—k<7(a) —2—mng— N(a) (in particular, we have n < 7(a) — 2).

(2) The map I:Y — Y is an isomorphism.

(8) For an element o € B, an integer n and a grading i, the following two statements are
equivalent.

(a) We have Proj, o Gy, o I(ar) # 0.
(b) We have n < () — 2 and there exists N € Z so that N € [0,7(a)) — 2 —n] and

_ () + 7 (o) — (7(a) =2 —n)

p
+ Np.
5 p
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(4) Suppose for an mteger n and a grading © we have aq, . . .,
< L, then Proj’, oG, oI(a),. .

0 foralll <

oz, € B so that Proj,oGrol(a;) #
, Proj;, oG ol(ar) are linearly independent.

(5) Suppose a € % For any n € Z so that n < T( ) — 2, we have

Proj’* o G,,

™)+ 7 () F (t(a) =2 —n)

oI(a) = n}'3) () where iy = 5

Proof. (1). First, when k > ng + N(«), from the construction of w, we know that

o Pne

+,k +no+N(o¢)( )

v (w) = o

The last equality is from Lemma [6.14 part (6). Similarly, if n —k > 7(«)

from Lemma [2.17] that
WL oW, () =

no+N(« T(v
L ( )077+(,n2)+N(a) () = 0.

—2—ng— N(a), we know

k
\I]:L-J,rnno \I]nDnJrno k ( )

n4+no—k (o) —2— N(a) n
= ‘1’+?Ln oW ek oV - 27N(a)(w)
.. nitng— T(a)—2—N(«x T(
(Definition of w) = W' ko \Ilf()n)janofk( )o 7(’72()‘)727]\,(0‘)(@

(Lemma [6:T4] part (6)) = 0.

Next, we need to show that \Il’jn o

ng — N(a). Again, from Lemma [211] we have

U N () tmgk © OF L, 0 U, (w) =
(Definition of w) =

(Lemma [6.14] part (6)) =
(Lemma [6.14] part (3) and (6)) #

(2). Suppose B = {ag, ...,

() =

U (w) # 0 when k <

no + N(a) and n — k < 7(a) — 2 —

u" +N () no
70n0+N(a)+n k \I]Jr ng+N(a)( )

n +N a) ( )
—0n0+N(O‘)+" k n+;n0+N(a)(a)

77+ n0+N(a)+n k( )

ar} where L = dimc Y. We order the elements «; so that

T(ig1)-

Let w;, N; = N(«;) be the data associated to «; as above. Since

w; € @

je(=

for any 4, and by Lemma [2.19] the map
ProjoGp, :' Y

is an isomorphism, in order to show that [ is an isomorphism, it suffices to show that ws,. ..

are linearly independent.

Now suppose there are complex numbers Aq,. ..,

(NS}
(NS

(Fno ’ .])
1

D Tnod)

je(=%,5]

, WL

AL so that

L
Z )\iwi =0.
i=1
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Applying the map \Ifif:(ﬁ)ﬁ oW N,

of the lemma, we know

, from the construction of w;, the order of a; and part (1)

L
no+N- n,
0= Wiore 5 oW, (D) Aiwi)

i=1
= Z )\iai
o
where the summation in the second line is over all «; with
T(ai) = T(al), and Ni = Nl.

Since «; are linearly independent, so all relevant A; must be zero. Suppose i is the smallest index
in the rest. By our choice of o, the element «;, has the largest 7 among the rest ;. Hence we can

10:(];7 10)_2 o \I/’j‘fno N to filter out «; with smaller 7. Repeating this argument,
we could prove that allo)\i must be zero.

(3). Let ng, w, i(a), and N(a) be constructed as above. We first prove that (b) = (a). Note
when constructing the isomorphism 7, from Corollary 2.9 and Lemma 218 we can take ny = ng — 2
and w' = (1/11‘3;0271)*1 o (Y1017 (w) that will lead to the same I as ng, w. (Note by construction
passing from ng to ng — 2 will increase N(a) by 1.) As a result, we can always assume that ng is
small enough compared with any given n. Now recall by construction
l(a) _ T+(Oé) ;—T—(Oé) _ (T(CY) _22 - nO)p + N(a)p

and by the assumption in (b) we have
1)+ 7 (o) = (1(a) =2 —n)
a 2
We can assume that ng is small enough so that N(«) > N. Take k = N(a) — N + ng. It is
straightforward to check that from the construction of I and Lemma [2.18 we have
Proj’, o G, o I(a) = \If]in o U, (w).

It is straightforward to verify that k — ng < N(a) and n — k < 7(a) — 2 — ng — N(a). As a result,
we conclude from part (1) that

apply the map ¥

p-i—Np.

Proj’, o G, o I(a) # 0.
Next we show that (a) = (b). Again assume that ng is small enough compared with the given
n. Then there exists ¢’ € (=%, £] so that there exists N’ € Z with

Z":if(n_ifo)p+]\]’p_

By Lemma T8 we know that
Projl, 0 Gy o I(a) = W™ N o Wm0 0 Projly 0 Gy, 0 ().
From the construction of I(a) and Lemma BT we know Proj’, o Gy, o I(a) # 0 only if i’ = i(a),
in which case
Projl, 0 Gy o I(a) = W™ N 0 Wm0 0 Projl 0 Gy, 0 I(a) = U Y 0™ ().
Hence Proj’ o G, o I(a) # 0 implies that
N' < N(a) and n— N' < 7(a) — 2 — N(a)
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by part (1). Taking N = N(a) — N’, it is then straightforward to check that

T (a) + 77 (o) — (7(a) =2 —n)p
2

Ne[0,7(a) —2—n] and i = + Np.

(4). The proof is similar to that of (2).
(5). It follows from the proofs of part (1) and (3). O

7.3. The exact triangle. In this subsection, we prove the exact triangle. Note that we choose the
basis B of Y as in Section

Proof of Proposition [71 We will verify the exactness at each space of the triangle.
The exactness at T, @ T, 1. This follows from Proposition [B.11
The exactness at T',,. From Lemma [T.3] and the construction of ®7*2¥ in (7.2), we know that

Im &7 2% < ker ®7 , . Now pick an arbitrary

ze (Tp,i) nker®) ;. =1Im <Proj; o Gn)

Since [ is an isomorphism, we can assume that

l
x = Z Proj, o Gn(\j - I(a))

j=1

where o; € B and Proj, 0 G, 0 I(c;) # 0. From Lemma [Z.8 part (3), we know that this implies that

for any j € [1,1] nZ, we have n < 7(a;) — 2 and there exists N; € Z so that N; € [0,7(¢;) —2 —n]
7 (@) + 77 (@) = (7(a) =2 — )

1= 9 p+ij.

Now for k large enough, we have n + 2k > 7(c;). Taking
Nj=n+k+1-7(a)+ N, €Z,

it is straightforward to verify that when k is large enough, we have
7 (a) + 77 () — (n + 2k — 7())
2

Hence by Lemma [6.12 part (3), there exists y; € (T'p42k,¢) so that F,10x(y;) = «;. As a result, it
is straightforward to check that

l
@ = pn+2k ( P yi) € Im " +2F,
i=1

. p
Nje[0,n+2k—7(a)] and i = + Np.

The exactness at I, o;. Suppose x € (T, 425, %) and

l
Fn+2k(I) = Z /\j ©Q
Jj=1

with A; # 0 and o; € B.

First, if € Im @Zigk, then from Lemma [[4] part (2), we know that for any 1 < j <[, we have

(n-1p—gq
2

(n—Lp—q

ori <7t (aj) + 5

either i > 77 (o) —
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If we write
+ + _ -2 —
o)) ) =2 ey,
for some N; then the inequality
—1)p—
P> (a) - (n—1p—gq
2
implies that
N, > 10, (o) — (mn-1p—q 77 (@)+7 () = (1(a) =2 —m)p
P 2 2
A ) ) B AW () NP
2 P 2
=7() —1—n
Note the last equality uses the definition of 7(«) in Definition Similarly we can compute that
“1)p —
i <7 (ay) + 7(71 2)p g

implies that

N; < %(TJr(a])_'_ (71712)17*(1 _ 7'+(Oé)+7'(04)2(7’(a)2n)p)
1 T (o) =77 (o) — 7()
:§<1+ p 'J)+ 5 1
= 1.

In summary, x € Im @Zigk implies that for all 1 < j <, either N; > 7(a;) =1 —mn or N; < —1.

Hence from Lemma [T.8 part (3), we know that
Proji, 0 G o I(a;) =0

for all 1 < j <1 and as a result, ®"2F(z) = 0.

Second, suppose z ¢ Im @Zigk. For any 1 < j <, we can write

(o () — —_9_
T ) ) 2
for some N;. Then from Lemma [T4] part (3) and a similar computation as above, we know that
there exists j so that 1 < j <, and

N;e[0,7(ej) =2 —n] N Z.

Hence by Lemma [T.8 part (2) and (4) we know that
Proj, o Gy o I(a;) # 0 = &2 () # 0.
Hence we conclude that

n+k __ n+2k
Im®}75, = ker @7 7=F.



KNOT SURGERY FORMULAE FOR INSTANTON FLOER HOMOLOGY I: THE MAIN THEOREM 55

7.4. The commutative diagram. In this subsection, we will prove the commutative diagram
presented at the beginning of the section. Note that we choose the basis B of Y as in Section

Lemma 7.9. Suppose n € Z and i is a grading. Suppose x € (T'y,,i) so that

l
= > Ny,
J
with A; #0 and aj € B for all1 < j <. Then for any 1 < j <1, there exists N; € [0,n+1—7(a;)]

so that
T (ay) + 77 (o) — (n +1—7(a ))p

1= D) + ij.
Proof. This is a combination of Lemma [611] part (3), Lemma part (3), and Lemma [T4] part
(1). The proof is similar to that of Lemma [74 part (2). O

Proof of Proposition[7.2 We only prove the first commutative diagram

+k+1 2n+§k+1
n
w w*,7l+k+1
I‘2n+§k+1 I‘H
k4l 2n+§k+1 m
n
§ PR L AT +.n
<I>n+2k
n
Fn+2k Fn

The other is similar. Note that at the end of Section [6.3] we introduce new notations of 7 ,, 5 to
remove the scalars. Then the second commutative diagram only holds up to a scalar.
First, note the maps from I‘2n+2k+1 to I', and I'y 4o both factor through I'y,1x4+1. As a result,

we only need to prove the followmg commutative diagram for large enough k.

wn+k+1
Fn+k+l I‘u
‘Ili+nkj21k wi,n
¢Z+2k
Fn+2k Fn
Now suppose z € (T4 k11,4). Write
n+k+1 Z )\ s Oy
with A; # 0 and o; € B for 1 < j <. From Lemmalﬂl, we know for any 1 < j < [, there exists

N; e [O n+k+1—7(a;)] sothat
(7.4) j o THlog) £ (o) - ;n+k+1ff<aj>>p

+ ij.
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Taking n/; = 7(;) and N} = 0, we can apply Lemma [6.12| part (3) to find an element
T (o) + T_(aj))
2

Tj € (I‘T(Otj)7

so that

It is then straightforward to check that

T(aj)+N; T (o .
(7.5) Yj = \I]+(,n<22+1 © \I]—(,r(()xj)JrNj (27) € (Cntrras9)-

Write
!
y=x-— Z i+ Yj € (Crnyktr, i)
=1

From Lemma we know that
Frirs1(y) =0.
As a result, by Lemma [6.6]

l
dji,n © ijrukJrl("E) = Z Ai - dji,n © djijrukJrl(yj)
i=1

Note unless N; =n +k + 1 — 7(a;), we have

n+k+1 T(a;)+N;
P oV kel =0

by the exactness. As a result,
k+1 k+1 (aj)
’@[Ji,n © ifu * (‘T) = Z )‘z : dji,n © iﬁz * o \IJZ)i](aj)JrNj (‘TJ)

1<j<l
Nj=n+k+1—7(cy)

(Commutativity in Lemma 2.12)) = Z Ai -l 0 1/)1(,31)(333-)
1<j<l
Nj=n+k+1—7(cy)
(Definition of ni(z")) = Z A ni(zj)(ozj)
1<j<!
Nj=n+k+1—7(c)
Now we deal with ®7+2F o W *F1L (2) Since Fj,4x41(y) = 0, Lemma 2I9 implies that

+,n+2k
n+k+1 _
\I]+,n+2k(y) =0.

Hence
1
k k
‘Ijijrn-:r;k(x) = Z /\1 ’ \I/itrn-:;k(yj)
j=1
where y; is defined as in (7.5]). Note by definition y; € (T'p114%,¢), so from Lemma [2.6] we know

§ _(k=Dp
‘1’+,+ff2lk(yj) € (Cryon,i— T)

Note by (A and Lemma T8 we know that

Frgor 0 WEEEL () = Fray (75) = ay.
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Hence l
i (k=Dp
ey o W () = Z Projn 7 oGy ol(ay).
i=1
We write . B
. (k—21)q _ T (ay) + T (Oéj);(T(aj)—z—n)erNJ/_p
Comparing the above formula with (74]), we know
Ni=Nj+71(a;) —n—k—1.
Note by construction N; < n + k + 1 which means N} < 0. Hence from Lemma we know
L =Dp
Proj, ? oGpol(a;)+#0
if and only if N} =0, i.e., Nj =n+k+1—7(a). Also when N =0 from Lemma [T.§ part (5) we
know
N 7(a)
Projy, oGy ol(aj) =mny." (o).
As a result, we know
. ! G
@Z”k o \I/:*nr;k (z) = Z Aj - Projn, % oGpol(aj)
j=1
=2 i)
1<j<l
Nj=n+k+1—7(ay )
= wi,n © ijrukJrl(x)
O
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